
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Summer 2019

Implementation of View Factor Model and Radiative Heat Transfer Implementation of View Factor Model and Radiative Heat Transfer

Model in MOOSE Model in MOOSE

Abdurrahman Ozturk

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Nuclear Engineering Commons

Recommended Citation Recommended Citation
Ozturk, A.(2019). Implementation of View Factor Model and Radiative Heat Transfer Model in MOOSE.
(Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/5348

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
dillarda@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=scholarcommons.sc.edu%2Fetd%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5348?utm_source=scholarcommons.sc.edu%2Fetd%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu

IMPLEMENTATION OF VIEW FACTOR MODEL

AND RADIATIVE HEAT TRANSFER MODEL IN MOOSE

by

Abdurrahman Ozturk

Bachelor of Science

Hacettepe University, 2012

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Nuclear Engineering

College of Engineering and Computing

University of South Carolina

2019

Accepted by:

Travis W. Knight, Director of Thesis

Benjamin Spencer, Reader

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

ii

© Copyright by Abdurrahman Ozturk, 2019

All Rights Reserved.

iii

DEDICATION

 This work is dedicated to my family who has never given up supporting me. I also

want to dedicate this work to any person who has contribution on me during my life.

iv

ACKNOWLEDGEMENTS

 This material is based upon work partially supported by the U.S. Department of

Energy NEUP IRP program under award agency number DE-NE-0008531. I also would

like to acknowledge Dr. Travis W. Knight and Dr. Benjamin Spencer for his guidance

and encouragement throughout the course of this research.

v

ABSTRACT

View factors are functions that represent the geometric relationship between

surfaces. They are important parameters for radiative heat transfer calculations. View

factor catalogues are available for simple geometries in the current literature. However, in

the case of complicated geometry, analytical or numerical methods are needed to evaluate

view factors. The Monte Carlo (MC) method is the most flexible one among numerical

methods, which are used to calculate view factors, since it can be applied to any

geometry.

When experimental studies are not affordable to conduct, modeling of

engineering problems gains more importance. Idaho National Laboratory (INL)’s finite

element framework Multiphysics Object Oriented Simulation Environment (MOOSE) is

a robust engineering tool to model physical problems including heat transfer. However,

MOOSE doesn’t have a method to calculate view factors. Hence, a method is needed to

calculate radiative heat transfer using view factors. Implementing a new model in

MOOSE and using it in heat transfer calculations for an arbitrary geometry will enable

the detailed evaluation of radiative heat transfer in complex geometries.

In this study, a nuclear fuel pellet heating and cracking experimental case is

modeled as a sample case by using the new MOOSE methods that are implemented in

this study. The effect of radiative heat transfer on radial and axial temperature profile is

evaluated.

vi

TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF SYMBOLS .. xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1: INTRODUCTION AND MOTIVATION ..1

CHAPTER 2: LITERATURE REVIEW ...3

2.1. THEORY ..3

2.2. LITERATURE REVIEWS ...10

2.3. FINITE ELEMENT MODELING (MOOSE) ..11

CHAPTER 3: METHODOLOGY ...14

3.1. MONTE CARLO METHOD ..14

3.2. MOOSE MESH STRUCTURE ..14

3.3. MOOSE USER OBJECTS ...16

3.4. VIEW FACTOR MODEL ..17

3.5. RADIATIVE HEAT TRANSFER MODEL ..48

vii

CHAPTER 4: RESULTS AND DISCUSSION ...50

4.1. PARALLEL RECTANGLES ...51

4.2. PERPENDICULAR RECTRANGLES ..55

4.3. COAXIAL DISKS ..59

4.4. COAXIAL CYLINDERS ...61

4.5. CONCENTRIC SPHERES ...62

4.6. CASE STUDY: MODELING OF PELLET HEATING EXPERIMENT63

CHAPTER 5: CONCLUSION ..69

BIBLIOGRAPHY ..70

viii

LIST OF TABLES

Table 4.1 View Factors for h=2, w=2, d=2 ..51

Table 4.2 View Factors for different plate dimensions..54

Table 4.3 View Factors for h=3, w=3, d=4 ..56

Table 4.4 View Factors for different rectangle dimensions ...58

Table 4.5 View factors for r1=2, r2=2, d=2 ..59

Table 4.6 View factors for different distance to radius ratio ...59

Table 4.7 View factors for different disk dimensions..60

Table 4.8 View factors for r1=1, r2=2.5, h=6 ...61

Table 4.9 View factors for r1=1, r2=3 ..62

Table 4.10 Geometrical parameters for experimental setup ..63

Table 4.11 Temperature Dependent UO2 Thermal properties ...64

Table 4.12 Thermal properties of materials ...64

ix

LIST OF FIGURES

Figure 2.1 An arbitrary black enclosure ..4

Figure 2.2 Radiative exchange between two infinitesimal surface elements6

Figure 2.3 Radiative exchange between two finite surfaces ..7

Figure 3.1 Monte Carlo rays emitted from a source point ...14

Figure 3.2 Fundamental parts of a finite element mesh ...15

Figure 3.3 Side and node orientation for a hexahedron finite element16

Figure 3.4 Length of a vector ...18

Figure 3.5 Angle between vectors ...19

Figure 3.6 Distance between points ...20

Figure 3.7 Side map representation ...21

Figure 3.8 Surface normal..22

Figure 3.9 Center point of element side ...24

Figure 3.10 Area of a triangle ..25

Figure 3.11 Area of element side by using triangles ...26

Figure 3.12 Direction vector ..27

Figure 3.13 Solid angle representation on spherical coordinates28

Figure 3.14 Polar and Azimuthal Angle Distributions ..29

Figure 3.15 Surface normal orientation ...30

Figure 3.16 Unit normal vector in spherical coordinates ...30

Figure 3.17 An arbitrary point on element side ...34

x

Figure 3.18 An arbitrary point out of element side ..34

Figure 3.19 Uniform distribution on a circle surrounding the element side35

Figure 3.20 Surface orientation..37

Figure 3.21 An arbitrary plane ...39

Figure 3.22 Intersection point in spherical coordinates ...40

Figure 3.23 Representation of source and intersection point ...40

Figure 3.24 Testing intersection point on target surface ..41

Figure 3.25 Testing visibility of target surface ..43

Figure 3.26 Flow chart for Monte Carlo calculations ..46

Figure 3.27 Flow chart for ViewFactor model ..47

Figure 3.28 Radiative heat exchange between elements ...48

Figure 3.29 Flow chart for RadiativeHeatFluxBC model ..49

Figure 4.1 Geometry of parallel rectangles ..51

Figure 4.2 View factor for parallel plates for different sampling number52

Figure 4.3 Change of average view factor with sampling number52

Figure 4.4 Change in percentage error with sampling number ..53

Figure 4.5 Change of average view factor with rectangle dimensions54

Figure 4.6 Change of percentage error with rectangle dimensions55

Figure 4.7 Geometry of perpendicular rectangles ..55

Figure 4.8 Change of average view factor with sampling number56

Figure 4.9 Change of percentage error with sampling number ...57

Figure 4.10 Change of average view factor with different rectangle dimensions58

xi

Figure 4.11 Geometry of coaxial disks ..59

Figure 4.12 Change of average view factor with distance to radius ratio60

Figure 4.13 Change of average view factor with disk radius ..60

Figure 4.14 Geometry of coaxial cylinders ..61

Figure 4.15 Geometry of concentric spheres ...62

Figure 4.16 Geometry representation of experimental setup ...63

Figure 4.17 Computation model of experimental setup ...64

Figure 4.18 Pellet centerline temperature for only concentric cylinders66

Figure 4.19 Pellet centerline temperature for computational geometry67

Figure 4.20 Axial temperature profile in pellet ...67

Figure 4.21 Radial temperature profile in pellet ..68

xii

LIST OF SYMBOLS

F View factor

Fij View factor between surfaces i and j

q Heat flux

 Unit direction vector

n Surface normal

N Total number of sampled rays

m Number of rays hitting target surface

E Emissive Power

xiii

LIST OF ABBREVIATIONS

CDF ... Cumulative Distribution Function

FEM ... Finite Element Method

INL .. Idaho National Laboratory

JFNK .. Jacobian-free Newton Krylov

LWR .. Light Water Reactor

MBM ... MOOSE-BISON-MARMOT

MC .. Monte Carlo

MOOSE..Multiphysics Object Oriented Simulation Environment

PDF .. Probability Distribution Function

RIA .. Reactivity Initiated Accident

TREAT ... Transient Reactor Test Facility

USC ... University of South Carolina

1

CHAPTER 1

INTRODUCTION AND MOTIVATION

Heat or energy is one of the main driving forces for transition from non-

equilibrium state to steady state for a system. The system might be as complicated as a

nuclear power plant or as simple as an ice cream. In almost all areas of science, it is

essential to account for heat transfer to analyze the system correctly.

Heat is transferred by three mechanisms which are conduction in solids,

convection of fluids and radiation between surfaces that are at high enough temperatures.

In processes which require high temperatures such as power generation, combustion

applications, heat treatment experiments and solar energy applications radiative heat

transfer becomes significant and should be taken into consideration besides conduction

and convection.[1]

In nuclear science, modeling is important because of the difficulty and safety

concerns in experimental studies. Heat transfer, neutron transport, thermal hydraulic,

fluid dynamics, material science are popular topics that researchers are developing

computer codes to analyze systems. The finite element framework Multiphysics-Object-

Oriented-Simulation-Environment (MOOSE), which is developed by Idaho National

Laboratory (INL), is a powerful tool to model variety of engineering problems including

nuclear science related problems such as fuel behavior under operating conditions. Since

the temperature levels are very high for a nuclear reactor, the radiative heat transfer

becomes dominant and should be modeled. Physically, radiative heat transfer occurs

2

between surfaces, so the geometric relationship between surfaces affects the heat

exchange. However, the current radiative heat transfer model in MOOSE calculates heat

transfer by assuming surfaces are infinitely parallel to each other and doesn’t consider

view factors in calculations.

In this research, it is aimed to implement new MOOSE models which are able to

calculate the view factors and radiative heat transfer between surfaces. After literature

review and doing some research to guide in choosing the right method, because of its

applicability and feasibility for complex geometries, being one of the most efficient and

commonly used numerical solution technique, Monte Carlo (MC) method is chosen in

order to use in view factor calculations.

3

CHAPTER 2

LITERATURE REVIEW

2.1 THEORY

2.1.1 RADIATIVE HEAT TRANSFER

The radiative heat transfer is energy exchange between surfaces via

electromagnetic waves. The heat coming from sun, feeling hot around camp fire can be

given as everyday examples. All materials continuously emit and absorb electromagnetic

waves or photons depending on surface temperature. The radiative heat transfer rates are

generally proportional to differences in temperature of radiating materials to the fourth

power. [1]

 𝑞 ∝ 𝑇4 − 𝑇∞
4 (1)

As it can be inferred from equation (1), the radiative heat transfer becomes

dominant at high temperatures. Analyzing radiative heat transfer is more difficult

compared to conduction and convection because of higher order temperature relation.

Electromagnetic waves striking a surface may be reflected, absorbed or

transmitted. If the wave is attenuated in medium, then medium is called as opaque. If it

passes through medium without attenuation, the medium is called as transparent. There is

an important definition used in radiative heat transfer calculations: black surface or black

body, which is an opaque surface does not reflect any radiation.

4

Another important term, emissive power, (E), is defined as the radiative heat flux

emitted from a surface in all directions and calculated as,

 𝐸(𝑇) = ∫ 𝐸𝑣(𝑇, 𝑣)𝑑𝑣
∞

0

 (2)

and blackbody emissive power is calculated by Stefan-Boltzman Law,

 𝐸𝑏(𝑇) = ∫ 𝐸𝑏𝑣(𝑇, 𝑣)𝑑𝑣
∞

0

= 𝑛2𝜎𝑇4 (3)

where 𝜎 = 5.67𝑒 − 8
𝑊

𝑚2𝐾4
 is known as Stefan-Boltzmann constant

 𝑛 is refractive index (𝑛 ≅ 1 for vacuum and gases)

To describe radiative heat flux leaving a surface, it is inadequate to use only

emissive power. The direction dependent quantity, radiative intensity, (I), can be used

instead.

 𝐼(𝑟, �̂�) = ∫ 𝐼𝜆(𝑟, �̂�, 𝜆)𝑑𝜆
∞

0

 (4)

Integrating radiative intensity over all possible directions will give total energy emission

from surface,

 𝐸(𝑟) = ∫ 𝐼(𝑟, �̂�) �̂� ∙ �̂� 𝑑𝛺
2𝜋

 (5)

Figure 2.1 An arbitrary black enclosure

𝐻𝑜

𝑑𝐴

𝑑𝐴′

r

r'

0

5

Figure 2.1 shows a black-walled enclosure of arbitrary geometry. The temperature

distribution is indicated by 𝑇(𝑟). Energy balance for a small area of 𝑑𝐴 gives,

 𝑞(𝑟) = 𝐸𝑏(𝑟) − 𝐻(𝑟) (6)

𝐻(𝑟) is the irradiation onto 𝑑𝐴 including both from entire enclosure and from outside.

 𝐻(𝑟) = ∫ 𝐸𝑏(𝑟′)𝑑𝐹𝑑𝐴−𝑑𝐴′

𝐴

+ 𝐻𝑜(𝑟) (7)

 𝑞(𝑟) = 𝐸𝑏(𝑟) − ∫ 𝐸𝑏(𝑟′)𝑑𝐹𝑑𝐴−𝑑𝐴′

𝐴

− 𝐻𝑜(𝑟) (8)

where 𝑑𝐹𝑑𝐴−𝑑𝐴′ is the view factor between surface 𝑑𝐴 and 𝑑𝐴′.

If the enclosure is divided into N isothermal sub-surfaces, the average heat flux becomes

 𝑞𝑖 = 𝐸𝑏𝑖 − ∑ 𝐸𝑏𝑗𝐹𝑖−𝑗

𝑁

𝑗=1

− 𝐻𝑜(𝑟) (9)

where 𝐹𝑖−𝑗 is the view factor between surface 𝐴𝑖 and 𝐴𝑗.

2.1.2 VIEW FACTORS

The radiative energy transfer between surfaces is nearly not affected by the

medium that separates them. The participating media could be vacuum, monoatomic or

diatomic gases at low temperatures. Such examples include solar collectors, radiative

space heaters, illumination problems etc. Radiative heat exchange between surfaces can

be analyzed by making assumptions of an idealized enclosure and surface properties. [1]

 The most useful one is assuming that all surfaces are black, which means that

there is no radiation reflection on surfaces and no direction dependency for radiation

emission from surface. Reflection, absorption and transmission can be account for more

realistic radiative heat transfer analyzes.

6

 There is no range limit for thermal radiation, and if there is no participating

media, photon will travel unimpeded from one surface to another. Therefore, no matter

how far it is, surfaces can exchange radiative energy with one another. How much energy

would be exchanged depends on surface areas, the distance separates them and their

orientation. All these are represented by a geometric function called view factor. It is

sometimes called as configuration factor, angle factor and shape factor. [1]

Figure 2.2 Radiative exchange between two infinitesimal surface elements

Figure 2.2 illustrates the radiative exchange between two infinitesimal surface elements

𝑑𝐴𝑖 and 𝑑𝐴𝑗 . The view factor for these surfaces determines how much energy leaves an

arbitrary surface element toward the other one. For surface 𝑑𝐴𝑖 and 𝑑𝐴𝑗 in figure, view

factor is defined as,

 𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
=

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑑𝐴𝑖 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑜𝑤𝑎𝑟𝑑 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑 𝑑𝐴𝑗

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑑𝐴𝑖

 (10)

𝑆

𝑛ሬԦ𝑖

𝑛ሬԦ𝑗

𝑑𝐴𝑖

𝑑𝐴𝑗
𝜃𝑗

𝜃𝑖

𝑟𝑖

𝑟𝑗

7

the heat transfer rate from 𝑑𝐴𝑖 to 𝑑𝐴𝑗 is determined by the radiative intensity as,

 𝐼(𝑟𝑖)(𝑑𝐴𝑖 cos 𝜃𝑖)𝑑𝛺𝑗 =
𝐼(𝑟𝑖) cos 𝜃𝑖 cos 𝜃𝑗 𝑑𝐴𝑖𝑑𝐴𝑗

𝑆2
 (11)

total radiative energy leaving 𝑑𝐴𝑖 is called as radiosity and related to intensity as

 𝐽(𝑟𝑖)𝑑𝐴𝑖 = [𝐸(𝑟𝑖) + 𝜌(𝑟𝑖)𝐻(𝑟𝑖)]𝑑𝐴𝑖 = 𝜋𝐼(𝑟𝑖)𝑑𝐴𝑖 (12)

Then view factor between two infinitesimal diffuse surfaces is

 𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
=

cos 𝜃𝑖 cos 𝜃𝑗

𝜋𝑆2
𝑑𝐴𝑗 (13)

The view factors have an important rule called law of reciprocity which is derived from

the equation (13), and it says

 𝑑𝐴𝑖𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
= 𝑑𝐴𝑗𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗

 (14)

The definition of view factor can be expanded to include radiative change between two

finite surfaces shown in Figure 2.3.

Figure 2.3 Radiative exchange between two finite surfaces

𝑆

𝑛ሬԦ𝑖

𝑛ሬԦ𝑗

𝑑𝐴𝑖

𝑑𝐴𝑗
𝜃𝑗

𝜃𝑖

𝑟𝑖

𝑟𝑗

8

Similarly, the total energy leaving 𝐴𝑖 toward 𝐴𝑗 is,

 ∫ ∫ 𝐼(𝑟𝑖)
cos 𝜃𝑖 cos 𝜃𝑗

𝑆2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (15)

and view factor is defined as

 𝐹𝐴𝑖−𝐴𝑗
=

∫ ∫ 𝐼(𝑟𝑖)
cos 𝜃𝑖 cos 𝜃𝑗

𝑆2 𝑑𝐴𝑗𝑑𝐴𝑖𝐴𝑗𝐴𝑖

𝜋 ∫ 𝐼(𝑟𝑖)𝑑𝐴𝑖𝐴𝑗

 (16)

If it is assumed that the intensity leaving 𝐴𝑖 does not vary across the surface, the view

factor reduces to,

 𝐹𝐴𝑖−𝐴𝑗
=

1

𝐴𝑖
∫ ∫

cos 𝜃𝑖 cos 𝜃𝑗

𝜋𝑆2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (17)

Then another version of the law of reciprocity is found,

 𝐴𝑖𝐹𝐴𝑖−𝐴𝑗
= 𝐴𝑗𝐹𝐴𝑗−𝐴𝑖

 (18)

If the surface is a part of enclosure geometry, there is also a summation relationship for

view factors,

 ∑ 𝐹𝑑𝑖−𝑗

𝑁

𝑗=1

= ∑ 𝐹𝑖−𝑗

𝑁

𝑗=1

= 1 (19)

2.1.3 METHODS FOR VIEW FACTOR CALCULATIONS

The calculation of view factor between two specified surfaces requires to solve

the double area integral given in equation (17). Analytical solution of such kind of

integrals is not easy to evaluate for complex geometries. Therefore, analytical approaches

or numerical methods are used to handle view factor calculations.

9

 Evaluation methods for view factors can be categorized into three groups,

1- Direct integration

2- Special methods

3- Statistical determination

The view factor formula (Eq. (17)) can be solved directly by numerical or

analytical integration methods if the geometry is not too complicated. Area integration

and contour integration are known methods for direct integration. Furthermore, there are

special methods using view factor algebra, including reciprocity and summation rules,

instead of calculating integration.

Experimental methods can also be used to calculate view factors. Unit sphere

method introduced as the first experimental method by Nusselt in 1928. It is a powerful

method to calculate view factors between one infinitesimal and one finite area. Later on,

ray casting method was developed based on unit sphere method, which is using computer

graphics technique to construct the projected area. [1]

Another way to calculate view factors is statistical sampling with Monte Carlo

(MC) method. MC method is a class of numerical techniques based on the statistical

characteristics of physical models. The method was developed by early workers trying to

analyze the potential behavior of nuclear weapons. Experiments were difficult and

analysis methods were not able to provide accurate prediction. Thus, simulating neutrons

and tracking their behavior was the solution to understand average weapon behavior. An

early description of the philosophy behind the MC approach was given by Metropolis and

Ulam (1949) [2].

10

In view factor calculations, a total number of rays (N) are emitted from a surface

with identical properties but random directions. Some of the rays will hit target surface

while others will not. If the number of rays hit is m, then view factor is calculated as,

 𝐹𝑖𝑗 =
𝑚

𝑁
 (20)

2.2 LITERATURE REVIEWS

In literature there are many works done by researchers for view factor

calculations. Different methods were tested for complex geometries for which

theoretical formulas cannot be used.

Bopche and Sridharan (2009) presented an application of contour integral

technique to calculation of diffuse view factors for elements of nuclear fuel bundle.

They derived analytical expressions for different cases including two identical

cylindrical rods, two cylindrical rods with interference by another rod, and between

one cylindrical rod and a non-concentric cylindrical enclosure. They compared results

obtain from their expressions with literature and concluded that using infinite length

approximations in finite length calculations can cause high computational errors. [7]

Narayanaswamy (2015) has used Nusselt’s unit sphere method to calculate

view factor between two arbitrarily oriented planar triangles and planar polygons. The

main reason of focusing only these two arbitrary shapes was that most mesh

generation software for finite element analysis and computer graphics discretize

geometry into them. He ended up with deriving an expression for view factor between

two arbitrarily oriented planar polygons, which obeying reciprocity rule of view

factors. Another conclusion of this study was that the numerical quadrature is not

11

needed for evaluation of the special function in the analytical view factor

expression.[8]

Lei Yang and Wenzhen Chen (2014) thought that existing theoretical formulas

for view factor between nuclear fuel bundles are not suitable for non-standard

assembly geometries such as hexagonal or circular. For view factor calculations, they

used discrete transfer model (DTRM) and discrete ordinates model (DO), which both

are proposed on CFD method. They concluded that DTRM method can be used to

calculate view factors accurately. [9].

Barry and Ying (2016) calculated numerically view factors between hot and

cold side ceramic plates within a thermoelectric device with ray tracing method by

utilizing hybrid CPU-GPU high performance computing. They tried different set of

dimensions for plates and obtain very accurate results. [10]

Mirhosseini and Saboonchi (2011) applied the MC method to calculate view

factors for a plate including strip elements to circular. They investigated the

performance of MC technique by changing number of strip elements and number of

rays. They observed that the error decreased as the number of rays increased, which

was expected for a statistical method.[11]

2.3 FINITE ELEMENT MODELING (MOOSE)

 Modeling physical problems is a powerful way for engineers and scientists to

understand the nature of the problem. Computational models can bring light for special

cases that are difficult measure experimentally. Especially in nuclear industry, because of

safety and cost related concerns, computational studies take an important place.

12

 Every phenomenon in nature can be described by the laws of physics with terms

of algebraic, differential, and/or integral equations, which is called analytical description

of physical phenomenon or mathematical models. The solution of mathematical models

is sometimes not easy to solve and requires making reasonable assumptions or using

numerical methods. Rapid development in computer science makes it possible to solve

many engineering problems numerically. [4]

 The finite element method and its generalizations are the most powerful

computer-oriented methods ever devised to analyze practical engineering problems.

Today, finite element analysis has a significant place in many fields of engineering

design and manufacturing. [4]

 In finite element, first, the geometry of problem is divided into subdomains or

finite elements. Then, for each element, governing equations that represent the physics of

the problem are approximated by polynomials. Finally, the equations are solved, and an

approximate solution is found on finite elements.

 Multiphysics Object Oriented Simulation Environment (MOOSE) is a parallel

computational framework has been under development since 2008 to provide solutions to

systems of coupled, nonlinear partial differential equations (PDEs) which are important

for nuclear processes. Differ from traditional data-flow oriented computational

frameworks, MOOSE uses Jacobian-free Newton-Krylov (JFNK) scheme in order to

reduce memory and time consumption. This scheme employs Krylov method for solving

the linear system that result from the application of Newton’s method. Since the Krylov

iterative methods require only matrix-vector product rather than full matrix product, the

full Jacobian matrix is not needed. [5]

13

Starting with a discrete problem of length N,

 𝐹(𝑥) = 0 (21)

the Jacobian of the system is defined by the 𝑁 𝑥 𝑁 matrix

 𝒥(𝑥) =
𝜕𝐹(𝑥)

𝜕𝑥
 (22)

The Newton iteration can be expressed as

 𝒥(𝑥𝑘)𝛿𝑥𝑘 = −𝐹(𝑥𝑘) (23)

which leads to

 𝑥𝑘+1 = 𝑥𝑘 + 𝜕𝑥𝑘 (24)

By using Krylov solvers, the Jacobian matrix is reduced to a matrix-vector

 𝒥(𝑥𝑘)𝛿𝑥𝑘 ≈
𝐹(𝑥𝑘 + 𝜖𝛿𝑥𝑘) − 𝐹(𝑥𝑘)

𝜖
 (25)

14

CHAPTER 3

METHODOLOGY

3.1 MONTE CARLO METHOD

Like other MC applications, rays used in view factor calculations are sampled

from an origin, and their behavior is tracked till they are disappeared. Rays are

considered as having identical properties except direction. In this work, rays are

considered as absorbed in the first surface they intersect. Figure 3.1 illustrates MC rays

used to calculate view factor between parallel plates.

Figure 3.1 Monte Carlo rays emitted from a source point

3.2 MOOSE MESH STRUCTURE

MOOSE has a built-in mesh generator for simple meshes such as lines, rectangles,

and rectangular prisms(boxes). For complex geometries, it is suggested to use external

mesh generation software and convert it to a format that MOOSE can read.

Source Point

Rays

15

Finite element mesh is formed by four main parts: blocks, elements, sides and

nodes. In Figure 3.2, these fundamental parts are illustrated to make them easy to

understand. The 3D cubic mesh in figure was generated by using Trelis.

Figure 3.2 Fundamental parts of a finite element mesh.

For this mesh, there is only one mesh block, and 8-noded hexahedron (HEX8) is

chosen as element type. The block has 1000 finite elements (10x10x10), each finite

element has 6 sides, and each side has 4 nodes. Number of sides and nodes might change

according to element type such tetrahedron, pentahedron.

In MOOSE mesh structure, blocks, block sides(boundaries) and elements have

unique identification (ID) numbers. On the other hand, elements’ sides and nodes do not

have any unique IDs because they vary on the element type. Instead, they are identified in

counter-clockwise order, as described in Figure 3.3.

Element Node Side Block

16

Figure 3.3 Side and node orientation for a hexahedron finite element.

3.3 MOOSE USEROBJECT

UserObject is a system in MOOSE framework that defines its own interface,

which other MOOSE objects can call to retrieve data. It can provide results as scalar or

vector value to other MOOSE objects. Users can easily add their own user objects to

perform any kind of calculation. There are four types of UserObjects:

• ElementUserObject: performs evaluations on each element;

• NodalUserObject: performs evaluations on each node;

• SideUserObject: performs evaluations on each side; and

• GeneralUserObject: is a generic object that can do any calculation while

providing a common interface for use by other MOOSE objects.

UserObjects have a specific anatomy and must override following functions,

• virtual void initialize(): it is called just ones before starting calculations. This

is useful for resetting data structures and initializing one-time variables such

as pseudo-random number seed.

Side 5

Side 0

Side 4

Side 1

Side 2

Side 3

Node 0 Node 1

Node 2 Node 3

17

• virtual void execute(): it is called once on each geometric object(element,node

or side) or just one time per calculation for a GeneralUserObject. All

calculations are done inside this function.

• virtual void threadJoin(const UserObject &y): it is used during threaded

execution to join together calculations generated on different threads. the “y”

needs to be casted to a constant reference of type of UserObject itself, then the

data from “y” needs to be extracted and added to the data in current(this)

object.

• virtual void finalize(): it is the very last function called after all calculations

have been completed. The user must take all of the calculations performed in

execute() and do some last operation to get final values.

• In addition to these functions, to provide data or result to other MOOSE

objects, an accessor function is defined, allowing for other MOOSE object can

call this function and get the result of the calculations done by user object.

The accessor function can be named as getValue(), averageValue(), etc…

3.4 VIEW FACTOR MODEL

Since it is extremely powerful and flexible, user object system is chosen to

calculate view factors. The implemented user object model is named as “ViewFactor”. It

is a derived class inheriting from a base class “ViewFactorBase”, which keeps all user

defined variables and user defined functions. All geometrical calculations, linear algebra

operations and MC sampling are done via user defined functions. It is safer and easier to

understand the code when functions are used instead of writing the whole code in just one

18

complex script. All user defined functions used in this work, and the physics behind them

are explained in details in this section.

ViewFactorBase class contains the following functions,

• getSideMap(elemPTR,sideID)

• getNormal(sideMap)

• getCenterPoint(sideMap)

• getArea(point, sideMap)

• getRandomDirection(normal, dimension)

• isOnSurface(point, sideMap)

• getRandomPoint(sideMap)

• isIntersected(point, direction, sideMap)

• isSidetoSide(sideMap, sideMap)

• isVisible(sideMap, sideMap)

• doMonteCarlo(sideMap, sideMap, sourceNumber, samplingNumber)

3.4.1 VECTOR LENGTH

Figure 3.4 Length of a vector

Vector is an object that has a magnitude and direction in space, having valuable

information for geometrical calculations. The magnitude (length) of a vector 𝑣Ԧ =

〈𝑥, 𝑦, 𝑧〉 shown in Figure 3.4, ‖𝑣Ԧ‖, can be calculated by following formula.

𝑣Ԧ = 〈𝑥, 𝑦, 𝑧〉

19

 ‖𝑣Ԧ‖ = √𝑥2 + 𝑦2 + 𝑧2 (26)

The function norm() in Point class is using this equation to calculate vector magnitude.

3.4.2 ANGLE BETWEEN VECTORS

The angle between two vectors can be calculated by using the cosine formula.

Figure 3.5 Angle between vectors

 𝑐𝑜𝑠𝜃 =
(𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ)

‖𝑣1ሬሬሬሬԦ‖‖𝑣2ሬሬሬሬԦ‖
 (27)

where ‖𝑣1ሬሬሬሬԦ‖ and ‖𝑣2ሬሬሬሬԦ‖ are the lengths of vectors 𝑣1ሬሬሬሬԦ = 〈𝑥1, 𝑦1, 𝑧1〉 and 𝑣2ሬሬሬሬԦ = 〈𝑥2, 𝑦2, 𝑧2〉,

respectively, and (𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ) is the dot product of the 𝑣1ሬሬሬሬԦ and 𝑣2ሬሬሬሬԦ vectors, defined as:

 (𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ) = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 (28)

Afterwards, the angle between vectors 𝑣1ሬሬሬሬԦ and 𝑣2ሬሬሬሬԦ can be calculated by using arccosine:

 𝜃 = acos (
(𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ)

‖𝑣1ሬሬሬሬԦ‖‖𝑣2ሬሬሬሬԦ‖
) = 𝑎𝑐𝑜𝑠 (

𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

√(𝑥1
2 + 𝑦1

2 + 𝑧1
2)(𝑥2

2 + 𝑦2
2 + 𝑧2

2)
) (29)

const Point v;

Real vector_length = v.norm()

𝑣1ሬሬሬሬԦ

𝑣2ሬሬሬሬԦ
𝜃

const Point v1;

const Point v2;

const Real theta = acos((v1*v2)/(v1.norm()*v2.norm()));

20

3.4.3 DISTANCE BETWEEN POINTS

The distance between two points in space is calculated by using following

formula;

Figure 3.6 Distance between points

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (30)

The distance between points is equal the magnitude of vector that is created by points.

3.4.4 ELEMENT SIDE MAP FOR NODAL COORDINATES

Map is one of the useful associative containers in C++ Standard Template

Library (STL). It contains key/value pairs, where key serves as an index into the map,

and the value serves as the associated data to be stored. The value can be any type in

C++, so map of containers such as map of vectors or map of maps can be defined.

In this work, to store nodal coordinates of element sides, map of vectors, which is

compatible with any kind of element type, is used, and termed as “side_map”. In almost

all functions, side_map is used as function argument. The key of side_map is an integer

and represents node ID in element side. The value of side_map is a vector and represents

the Cartesian (x,y,z) coordinates of the associated node. The size of side_map is equal to

d 𝑝1(𝑥1, 𝑦1, 𝑧1)
𝑝2(𝑥2, 𝑦2, 𝑧2)

const Point v1;

const Point v2;

const Real d = (v2-v1).norm();

21

the number of nodes on element side. Figure 3.7 illustrates what side_map represents for

an element side.

Figure 3.7 Side map representation

MOOSE is an object-oriented framework written in C++, giving the opportunity

to create individual objects for each element, side and node. Using pointers is the best

way to access these objects to reduce memory usage. View factor calculations are related

to element sides, and thus, side pointers are needed to retrieve nodal coordinates from

element surfaces. The UserObject model, ViewFactor, is inheriting from SideUserObject

class, which automatically loops over all elements in a specified boundary. For each

iteration of the loop, pointers are created to current element object.

Element object in MOOSE has a useful member function which creates a pointer

to side of an element if associated side ID is passed to function as argument. Similarly,

side object in MOOSE has a member function to create pointer to nodes of the side by

passing node ID to function. Those node pointers can be used to access nodal

coordinates. “side_map” is created by looping over nodes on a side and inserting their

IDs and x,y,z coordinates to map container.

𝑠𝑖𝑑𝑒_𝑚𝑎𝑝 =

ۏ
ێ
ێ
ۍ
0 〈𝑥0, 𝑦0, 𝑧0〉

1 〈𝑥1, 𝑦1, 𝑧1〉

2 〈𝑥2, 𝑦2, 𝑧2〉

3 〈𝑥3, 𝑦3, 𝑧3〉ے
ۑ
ۑ
ې

Node 0 Node 1

Node 2 Node 3

22

The function getSideMap(elemPTR,sideID) in ViewFactorBase class is using

element pointer and side ID and creates side_map as explanied.

3.4.5 ELEMENT SIDE NORMAL

Surface normal 𝑛ሬԦ, plays an important role in view factor calculations; it is

always orthogonal to a surface, and hence it is perpendicular to any point or vector lie on

the surface. For finite element mesh, normal is prone to change according to element

side. 𝑛ሬԦ can be found by cross product of any given two vectors, defined by three arbitrary

points on the surface.

Figure 3.8 Surface normal

For instance, in Figure 3.8, 𝑝1, 𝑝2, 𝑝3 are random points on surface S, vectors 𝑢 and 𝑣 are

calculated by taking difference point coordinates.

𝑛ሬԦ

𝑣Ԧ

 𝑢ሬԦ

 𝑝1(𝑥1, 𝑦1, 𝑧1)

𝑝2(𝑥2, 𝑦2, 𝑧2)

𝑝3(𝑥3, 𝑦3, 𝑧3)
𝑆

const std::map<unsigned int, std::vector<Point>>

ViewFactorBase::getSideMap(const Elem * elem,const unsigned int

side) const

{

 auto elem_side-elem->build_side_ptr(side);

 std::map<unsigned int, std::vector<Point>> side_map;

 unsigned int n_n = elem_side->n_nodes();

 for (unsigned int i = 0; i < n_n; i++)

 {

 const Node * node = elem_side->node_ptr(i);

 Point node_p((*node)(0), (*node)(1), (*node)(2));

 side_map[i].push_back(node_p);

 }

 return side_map;

}

23

𝑢ሬԦ = 〈𝑢𝑥 , 𝑢𝑦, 𝑢𝑧〉 = 〈𝑝3 − 𝑝1〉 = 〈(𝑥3 − 𝑥1), (𝑦3 − 𝑦1), (𝑧3 − 𝑧1)〉

𝑣Ԧ = 〈𝑣𝑥 , 𝑣𝑦, 𝑣𝑧〉 = 〈𝑝2 − 𝑝1〉 = 〈(𝑥2 − 𝑥1), (𝑦2 − 𝑦1), (𝑧2 − 𝑧1)〉

Then surface normal is calculated as,

 𝑛ሬԦ = 𝑢ሬԦ × 𝑣Ԧ = 𝑑𝑒𝑡 |

𝑖 𝑗 𝑘
𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

|

 𝑛ሬԦ = (𝑢𝑦𝑣𝑧 − 𝑢𝑧𝑣𝑦)𝑖 − (𝑢𝑥𝑣𝑧 − 𝑢𝑧𝑣𝑥)𝑗 + (𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥)𝑘 (31)

The function getNormal(sideMap) in ViewFactorBase class is calculating surface

normal in this way. It takes side_map as function argument, and uses first three nodes as

random points in an element surface, and uses them to calculate the surface normal. After

normalization, it returns surface normal as unit vector.

3.4.6 CENTER POINT OF ELEMENT SIDE

The geometric center point or centroid of a surface is useful for calculating area

and sampling a random point on a surface. Centroid can be calculated by finding

arithmetic mean position of all points surrounding polygon.

const Point

ViewFactorBase::getNormal(std::map<unsigned int,

std::vector<Point>> map) const

{

 Point p1 = map[0][0];

 Point p2 = map[1][0];

 Point p3 = map[2][0];

 Point v12(p2-p1);

 Point v13(p3-p1);

 Point n(v12.cross(v13));

 n /= n.norm();

 return n;

}

24

Figure 3.9 Center point of element side

For a 4 noded-element side in Figure 3.9, center point can be calculated as,

 𝑐 = ((
∑ 𝑥𝑖

𝑛=3
𝑖=0

4
) , (

∑ 𝑦𝑖
𝑛=3
𝑖=0

4
) , (

∑ 𝑧𝑖
𝑛=3
𝑖=0

4
)) (32)

The function getCenterPoint(sideMap) in ViewFactorBase class calculates the

center point of element side when side_map is passed to function and returns as a vector.

3.4.7 ELEMENT SIDE AREA CALCULATIONS

Surface area is another important parameter for view factor calculations. One of

the simplest approaches to calculate the area of any polygon is dividing the polygon to

triangles, afterwards calculating their areas and finally summing the areas of triangles. In

Node 0 Node 1

Node 2 Node 3

(𝑥0, 𝑦0, 𝑧0) (𝑥1, 𝑦1, 𝑧1)

(𝑥2, 𝑦2, 𝑧2) (𝑥3, 𝑦3, 𝑧3)

𝑐

const Point

ViewFactorBase::getCenterPoint(std::map<unsigned int,

std::vector<Point> > map) const

{

 unsigned int n=map.size();

 Point center(0,0,0);

 for (size_t i = 0; i < n; i++)

 {

 center += map[i][0];

 }

 center /= n;

 return center;

}

25

linear algebra, the area of a triangle can be calculated by finding half of the magnitude of

the cross-product of two edges.

Figure 3.10 Area of a triangle

𝑢ሬԦ = 〈𝑢𝑥 , 𝑢𝑦, 𝑢𝑧〉 = 〈𝑝3 − 𝑝1〉 = 〈(𝑥3 − 𝑥1), (𝑦3 − 𝑦1), (𝑧3 − 𝑧1)〉

𝑣Ԧ = 〈𝑣𝑥 , 𝑣𝑦, 𝑣𝑧〉 = 〈𝑝2 − 𝑝1〉 = 〈(𝑥2 − 𝑥1), (𝑦2 − 𝑦1), (𝑧2 − 𝑧1)〉

 𝑆 =
|𝑢ሬԦ × 𝑣Ԧ|

2
=

|𝑢ሬԦ||𝑣Ԧ|𝑠𝑖𝑛𝜃

2
 (33)

The vector lengths and the angle between vectors can be calculated by using

functions getVectorLength() and getAngleBetweenVectors(), which are using equations

(26) and (29).

 The element side area can be calculated by dividing into triangles, following the

previously discussed method. An arbitrary point is needed to create triangles by pairing it

with nodes. The center point of an element side can be used to create triangles as shown

in Figure 3.11. getCenterPoint() function will provide coordinates of center points when

side_map is passed as an argument.

𝑝1(𝑥1, 𝑦1, 𝑧1)

𝑝2(𝑥2, 𝑦2, 𝑧2)
𝑝3(𝑥3, 𝑦3, 𝑧3)

𝑢ሬԦ

𝑣Ԧ

𝜃

26

Figure 3.11 Area of element side by using triangles

The function getArea(point,sideMap) in ViewFactorBase class calculates total

area of triangles created by a given point and side nodes. When the point and side_map is

passed to function, it calculates and returns total area.

3.4.8 SAMPLING RANDOM DIRECTION

Direction sampling is one of the most important part of view factor calculations in

this work, in which a direction is sampled randomly in spherical coordinates system. In

spherical coordinate system, a direction vector is defined by length, 𝑟, polar angle, 𝜃, and

Node 0 Node 1

Node 2 Node 3

𝑐 𝐴1

𝐴2

𝐴3

𝐴4

const Real

ViewFactorBase::getArea(const Point &p, std::map<unsigned int,

std::vector<Point>> map) const

{

 unsigned int n = map.size();

 Real area{0};

 for (size_t i = 0; i < n; i++)

 {

 const Point node1 = map[i][0];

 const Point node2 = map[(i+1)%n][0];

 const Point v1(node1-p);

 const Point v2(node2-p);

 const Real theta = acos((v1*v2)/(v1.norm()*v2.norm()));

 area += 0.5 * v1.norm() * v2.norm() * sin(theta);

 }

 return area;

}

27

azimuthal angle, 𝜙. The Figure 3.12 shows conversion of a unit direction vector from

global spherical coordinate system to global cartesian coordinate system, 𝛺.

Figure 3.12 Direction vector

The polar angle changes from 0 to 𝜋, and the azimuthal angle from 0 to 2𝜋.

Direction vector can be found once the angles have been specified in these intervals.

However, the angles should be selected carefully to obtain a uniform direction

distribution at a given radial position. In spherical coordinate system vectors moves away

from each other in radial direction. Because of this, random numbers cannot be used

directly to sample angles in their ranges. Instead, probability distribution functions(PDF)

needs to be defined correctly and then cumulative distribution functions(CDF) needs to

be determined and used to sample angles uniformly.

𝑟

𝑧

𝑥

𝑦

𝛺ሬԦ

𝛺ሬԦ𝑥

𝛺ሬԦ𝑦

𝛺ሬԦ𝑧

𝜃

𝜙

𝛺 is unit direction vector,

𝑟 = 1

𝛺𝑥 = 𝑟 sin 𝜃 cos 𝜙

𝛺𝑦 = 𝑟 sin 𝜃 sin 𝜙

𝛺𝑧 = 𝑟 cos 𝜃

28

Figure 3.13 Solid angle representation on spherical coordinates

The Figure 3.13 shows a uniformly distributed points on a sphere surface. The basic idea

to obtain a uniform distribution is to consider the points to be photons or particles that are

emitted from an isotropic source. In that case, each element of a solid angle should

receive the same contribution from source, so the ratio of the unit element area to sphere

surface area, which is equal for each of photon(particle), relates to the PDF.

𝑃𝐷𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑑𝐴

𝐴

𝑃𝐷𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙

4𝜋𝑟2

𝑃𝐷𝐹(𝜃)𝑑𝜃 . 𝑃𝐷𝐹(𝜙)𝑑𝜙 =
sin 𝜃 𝑑𝜃

2

𝑑𝜙

2𝜋

 𝑃𝐷𝐹(𝜃)𝑑𝜃 =
sin 𝜃 𝑑𝜃

2
 → ∫ 𝑃𝐷𝐹(𝜃)𝑑𝜃

𝜋

0

= ∫
sin 𝜃 𝑑𝜃

2
= 1

𝜋

0

(34a)

 𝑃𝐷𝐹(𝜙)𝑑𝜙 =
𝑑𝜙

2𝜋
 → ∫ 𝑃𝐷𝐹(𝜙)𝑑𝜙

𝜋

0

= ∫
𝑑𝜙

2𝜋
= 1

2𝜋

0

 (34b)

29

 𝐶𝐷𝐹(𝜃) = ∫ 𝑃𝐷𝐹(𝜃)𝑑𝜃
𝜃

0

= ∫
sin 𝜃 𝑑𝜃

2

𝜃

0

=
1 − cos 𝜃

2
 (35a)

 𝐶𝐷𝐹(𝜙) = ∫ 𝑃𝐷𝐹(𝜙)𝑑𝜙
𝜙

0

= ∫
𝑑𝜙

2𝜋

𝜙

0

=
𝜙

2𝜋
 (35b)

Cumulative distribution functions are uniformly distributed random numbers, and thus,

the 𝜃 and 𝜙 distributions, shown in Figure 3. 14, now can be calculated indirectly by

using random numbers.

 𝜉1 = 𝐶𝐷𝐹(𝜃) =
1 − cos 𝜃

2
 → 𝜃 = acos(1 − 2𝜉1) (36a)

 𝜉2 = 𝐶𝐷𝐹(𝜙) =
𝜙

2𝜋
 → 𝜙 = 2𝜋𝜉2 (36b)

Figure 3.14 Polar Angle, 𝜃 and Azimuthal Angle, 𝜙 Distributions

These distribution functions ensure directions are uniformly distributed and can be used

in view factor calculations. In addition to uniform direction distribution, the coordinate

system is important for sampling as well. Finite element mesh has different sides and

they are not necessarily aligned with the global coordinate system, shown in Figure 3.15

Instead, a local coordinate system can be used for direction sampling to make it

compatible with any element side.

30

Figure 3.15 Surface normal orientation

Local coordinate system is basically created by rotating global coordinate system

till z-axis is aligned with the surface normal vector. The rotation angles are recorded for

later use in rotation matrix. Direction vector is sampled in global coordinate system as

previously described, and then by applying rotation matrix, it is transformed to local

coordinate system.

Figure 3.16 Unit normal vector in spherical coordinates

𝑧

𝑥 𝑦

𝑧 𝑥

𝑦

𝑧

𝑥

𝑦

𝑛ሬԦ

𝑛ሬԦ

𝑛ሬԦ

𝑛 is unit normal vector,

𝜃𝑛 = acos(𝑛𝑧)

𝜙𝑛 = acos ቀ
𝑛𝑥

sin 𝜃𝑛
ቁ for (𝑛𝑦>0)

𝜙𝑛 = 2𝜋 − acos ቀ
𝑛𝑥

sin 𝜃𝑛
ቁ for (𝑛𝑦<0)

𝑛ሬԦ = 〈𝑛𝑥, 𝑛𝑦 , 𝑛𝑧〉

𝑧

𝑥

𝑦

𝜃𝑛

𝜙𝑛

31

Rotation matrix is generated by using negative angles of unit normal vector.

𝜃𝑙 = −𝜃𝑛 = −acos (𝑛𝑧)

𝜙𝑙 = −𝜙𝑛 = − acos (
𝑛𝑥

sin 𝜃𝑛
)

𝑅𝑧 = [
cos 𝜙𝑙 sin 𝜙𝑙 0

− sin 𝜙𝑙 cos 𝜙𝑙 0
0 0 1

] , 𝑅𝑦 = [
cos 𝜃𝑙 0 − sin 𝜃𝑙

0 1 0
sin 𝜃𝑙 0 cos 𝜃𝑙

]

 𝑅𝑙𝑜𝑐𝑎𝑙 = 𝑅𝑧 ∗ 𝑅𝑦 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

] (37)

In the final step, the unit direction vector(𝛺𝑔) is sampled in global coordinate system

then transformed to local coordinate system (𝛺𝑙) by multiplying it with the rotation

matrix. If 2D direction is requested, polar angle(𝜃) is assumed as 𝜋/2, making it parallel

to the surface normal vector.

𝛺𝑔 = [

𝛺𝑥

𝛺𝑦

𝛺𝑧

] = [
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

]

𝑅𝑙𝑜𝑐𝑎𝑙 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

]

𝛺𝑙 = 𝑅𝑙𝑜𝑐𝑎𝑙𝛺𝑔 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

] [
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

]

 𝛺𝑙 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜃 cos 𝜙 + sin 𝜙𝑙 sin 𝜃 sin 𝜙 − cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜃
− cos 𝜃𝑙 sin 𝜙𝑙 sin 𝜃 cos 𝜙 + cos 𝜙𝑙 sin 𝜃 sin 𝜙 + sin 𝜃𝑙 cos 𝜙𝑙 cos 𝜃

sin 𝜃𝑙 sin 𝜃 cos 𝜙 + cos 𝜃𝑙 cos 𝜃
] (38)

32

The function getRandomDirection(normal,dim) takes the unit normal vector and

dimension as function arguments, and does all of the calculations explained above. It

considers the dimension requested and returns unit direction vector.

const Point

ViewFactorBase::getRandomDirection(const Point & n,const int dim)

const

{

 Real theta_normal = acos(n(2));

 Real phi_normal{0};

 if (theta_normal!=0)

 if (n(1)<0)

 phi_normal = 2 * _PI-acos(n(0)/sin(theta_normal));

 else

 phi_normal = acos(n(0)/sin(theta_normal));

 const Real theta_local = -theta_normal;

 const Real phi_local = -phi_normal;

 Real

Rlocal[3][3]={{(cos(theta_local)*cos(phi_local)),sin(phi_local),(-

cos(phi_local)*sin(theta_local))},{(-

cos(theta_local)*sin(phi_local)),cos(phi_local),(sin(theta_local)*

sin(phi_local))},{sin(theta_local),0,cos(theta_local)}};

 Real theta{0},phi{0};

 const Real rand_phi = std::rand() / (1. * RAND_MAX);

 const Real rand_theta = std::rand() / (1. * RAND_MAX);

 switch (dim)

 case 2:

 theta = _PI/2;

 phi = 2 * _PI * rand_phi;

 break;

 case 3:

 theta = 0.5 * acos(1 - 2 * rand_theta);

 phi = 2 * _PI * rand_phi;

 break;

 const Point

dir_global(sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta));

 const Point

dir_local((Rlocal[0][0]*dir_global(0)+Rlocal[0][1]*dir_global(1)+R

local[0][2]*dir_global(2)),

(Rlocal[1][0]*dir_global(0)+Rlocal[1][1]*dir_global(1)+Rlocal[1][2

]*dir_global(2)),

(Rlocal[2][0]*dir_global(0)+Rlocal[2][1]*dir_global(1)+Rlocal[2][2

]*dir_global(2)));

 return dir_local;

}

33

3.4.9 TESTING POINT ON ELEMENT SIDE

Positions of intersection point and source point of MC rays are the most important

information to calculate view factor between surfaces. Since random numbers are used in

MC sampling, intersection point or source point might be in any coordinate. To decide

whether a ray will be counted or not it is necessary to know their exact coordinates to

understand if the point is inside or outside the element side. To test a point on element

side, area can be used as the criterion. Unlike using center point to calculate the area of

an element side, discussed previously in function getArea(), an arbitrary point lying on

the same plane with element side is used in area calculations. If the point is inside, then

the total area of triangles will give the area of element side. On the other hand, if it is

outside then the total area will be greater than the actual area of element side. Therefore,

the total area can be used as a criterion/parameter to check whether a point lies on the

element side or not.

In Figure 3.17, for a 4-noded element side with a point, 𝑝, is shown. First, four

vectors from the nodes to the point are created. Afterwards, areas of triangles, 𝐴1, 𝐴2,

𝐴3, 𝐴4, are calculated by using two neighbor vectors, forming the sides of triangle, in

equation (33). For the case shown in Figure 3.17, the total area is expected to be equal to

the actual area of the element side, meaning the point is inside.

In Figure 3.18, for the same element side, a different point is defined. Areas are

calculated in as previously discussed; however, in this case the total area is greater than

the side area, which means the point is outside.

34

Figure 3.17 An arbitrary point on element side

Figure 3.18 An arbitrary point out of element side

The function isOnSurface(point,sideMap) uses the discussed logic. It takes point

and side_map as function arguments and tests if the point is on the element side. The

function return type is boolean, e.g. if the point is on the side, it returns “true”, otherwise

returns “false”. This function comes in useful for testing source and intersection points.

Node 0
Node 1

Node 2 Node 3

𝑝

𝐴1

𝐴2

𝐴3

𝐴4

Node 0 Node 1

Node 2 Node 3

𝑝 𝐴1

𝐴2

𝐴3

𝐴4

const bool

ViewFactorBase::isOnSurface(const Point &p, std::map<unsigned int,

std::vector<Point>> map) const

{

 const Point center{getCenterPoint(map)};

 Real elem_area = getArea(center,map);

 Real area = getArea(p,map);

 if ((area-elem_area)<_error_tol)

 return true;

 else

 return false;

}

35

3.4.10 SAMPLING RANDOM POINT ON ELEMENT SIDE

Besides sampling direction, multiple origins or source points are required to

calculate view factors more accurately. Rays which are used in view factor calculations

(see Figure 3.1), are emitted from 2D element sides, therefore random source points are

sampled on the same side. One simple way to select a random origin point on a surface is

drawing a circle around the geometric center of the side with radius that is large enough

to expand to edges of the element side, shown in Figure 3.19, and then sampling a point

inside the circle by randomly chosen radial position and angle.

The center point of element side and the radius of the circle can be easily

calculated by equations (32) (30). The angular position of random point is similar to

sampling direction in 3D. Since this random point lies on an element side, which is in x-y

plane, the polar angle (𝜃) is assumed as constant angle of 𝜋/2 . By making a small

modification for azimuthal angle (𝜙), getRandomDirection() function can be used to find

direction in 2D as well.

Figure 3.19 Uniform distribution on a circle surrounding the element side

𝜙𝑖 = 2𝜋𝜉1

𝑟𝑖 = 𝑅 ∗ √𝜉2

𝑥𝑖 = 𝑥0 + 𝑟𝑖 ∗ cos(𝜙𝑖)

𝑦𝑖 = 𝑦0 + 𝑟𝑖 ∗ sin(𝜙𝑖)

𝜙1 𝜙2

𝑝1

𝑝2
R

x

y

𝑟2

𝑟1

(𝑥0, 𝑦0)

36

The 𝜙 has uniform distribution, and it can be sampled over 2𝜋 by using pseudo-

random numbers. The radial position of random point needs to be sampled over circle

radius, R. To make radial position distribution uniform, sampling needs to be done

according to inverse square law which states that a physical quantity or intensity is

inversely proportional to the square of the distance from its source in space. This is

similar to using cosine distribution for 𝜃 in 3D direction sampling to get a uniform

distribution. Once the radial and angular position of point is found, they are converted to

global cartesian coordinate system to be used in calculations.

As mentioned before, the random points are chosen to be in a circle that surrounds

the element side. However, since the element side is not circular, it is possible that some

points will be outside the element side. For example, in Figure 3.19, point 𝑝2 is not on the

element side and thus it is rejected as an origin point. This method is termed rejection

method, in which first of all, points are chosen randomly, and then tested whether they

are inside the domain of interest.

const Point

ViewFactorBase::getRandomPoint(std::map<unsigned int,

std::vector<Point>> map) const

{

 const Point n = getNormal(map);

 const Point center{getCenterPoint(map)};

 Real rad{0},d{0}; //radius, distance

 for (size_t i = 0; i < map.size(); i++)

 Point p = map[i][0];

 d = (p-center).norm();

 if (d>rad)

 rad=d;

 while (true)

 const Real rand_r = std::rand() / (1. * RAND_MAX);

 const Real r =rad * std::sqrt(rand_r);

 const Point dir(getRandomDirection(n,2));

 const Point p(center + r*dir);

 if (isOnSurface(p,map))

 return p;

}

37

The function getRandomPoint(sideMap) takes side_map as argument, creates a

circle and samples a random point on it. After testing the point is on the element side by

utilizing isOnSurface() function, it accepts the point as origin if it is on element side, and

rejects one that is not.

3.4.11 TESTING ORIENTATION OF ELEMENT SIDES

Monte Carlo technique is one of the most computationally expensive numerical

methods, and finding a way to speed up the calculations and decrease their memory usage

is always favored. This can be done by avoiding unnecessary calculations and making

reasonable assumptions. Therefore, to make view factor calculations more time and

memory efficient, the orientation between surfaces are checked, and only relevant

surfaces are selected.

The basic idea of surface picking is checking if two different surfaces facing each

other, and they are eliminated if they cannot view each other. In case they face each

other, MC simulations are initiated. This is done for all surface pairs in a geometry, using

the surface normal as a main reference to check the orientation of surfaces.

Figure 3.20 Surface orientation

𝜃1

𝜃2

𝜙1

𝜙2

𝜙3

𝜃3

𝑆1

𝑆3

𝑆2
𝑆

𝜃3 >
𝜋

2
 

𝜙3 <
𝜋

2
 

𝜃1 <
𝜋

2
 

𝜙1 >
𝜋

2
 

𝜃2 <
𝜋

2
 

𝜙2 <
𝜋

2
 

38

Geometrically, surfaces are said to be turned towards each other if and only if the

angles between surfaces’ normal and the line connecting the centers of the surfaces are

smaller than 𝜋/2. In Figure 3.20, only the surfaces 𝑆 and 𝑆2 are facing each other because

both angles 𝜃2 and 𝜙2 are smaller than 𝜋/2. These angles can be called as orientation

angles.

The function isSidetoSide(sideMap,sideMap) is written to check surface

orientation by using the previously defined angle criteria. It takes side_map for each

surface as function arguments, calculates orientation angles and tests if they uphold 𝜋/2

criteria.

const bool

ViewFactorBase::isSidetoSide(const std::map<unsigned int,

std::vector<Point>> & master_side_map,

 const std::map<unsigned int,

std::vector<Point>> & slave_side_map) const

{

 std::map<unsigned int, std::vector<Point>> master_map =

master_side_map;

 std::map<unsigned int, std::vector<Point>> slave_map =

slave_side_map;

 const Point master_normal = getNormal(master_side_map);

 const Point slave_normal = getNormal(slave_side_map);

 for (size_t i = 0; i < master_side_map.size(); i++)

 {

 const Point master_node = master_map[i][0];

 for (size_t j = 0; j < slave_side_map.size(); j++)

 {

 const Point slave_node = slave_map[j][0];

 const Point master_slave = (slave_node - master_node);

 const Point slave_master = (master_node - slave_node);

 const Real theta_master_slave =

acos((master_normal*master_slave)/(master_normal.norm()*master_sla

ve.norm())); //Radian

 const Real theta_slave_master =

acos((slave_normal*slave_master)/(slave_normal.norm()*slave_master

.norm())); //Radian

 if (theta_slave_master<_PI/2 && theta_master_slave<_PI/2)

 return true;

 }

 }

 return false;

}

39

3.4.12 TESTING INTERSECTION OF ELEMENT SIDES

As discussed previously, it is considered that the rays used in calculations are

emitted from the random source points on the sides, traveling along a line until they

intersect another element side. The intersection point is a point that satisfies both line

equation which ray follows and plane equation on which target element side lie. Since the

direction vector is known, the line equation can be found. Furthermore, element side is

basically a small area on a 2D infinite plane whose equation can be found by normal

vector and any point given in plane. Solving the line equation and plane equation together

gives the coordinates of the point at which a ray intersects the 2D plane on which element

side is located. However, it might happen that the intersection point is not located in the

element side. Once the intersection point is found, it should be tested whether it lies on

element surface or not, which is done by isOnSurface() function.

Figure 3.21 An arbitrary plane

In Figure 3.21, a plane with normal 𝑛ሬԦ〈𝑛𝑥 , 𝑛𝑦, 𝑛𝑧〉 and a point 𝑝1(𝑥1, 𝑦1, 𝑧1) are shown.

The equation represents this plane is,

𝑛𝑥(𝑥 − 𝑥1) + 𝑛𝑦(𝑦 − 𝑦1) + 𝑛𝑧(𝑧 − 𝑧1) = 0

The unit direction vector ΩሬሬԦ = 〈Ω𝑥 , Ω𝑦, Ω𝑧〉 shown in Figure 3.22 represents the ray’s

direction, and thus, using this vector and origin point, any point in ray’s direction can be

found.

𝑛ሬԦ〈𝑛𝑥, 𝑛𝑦 , 𝑛𝑧〉

𝑝1(𝑥1, 𝑦1, 𝑧1) 𝑃𝑙𝑎𝑛𝑒

40

Figure 3.22 Intersection point in spherical coordinates

Figure 3.23 shows a random ray emitted from one plane to another. If there is a point that

satisfies both the ray’s and other plane’s equation, then the ray will intersect the plane at

that point, 𝑝. The only information known about point, 𝑝 is the plane equation. If the

distance, 𝑑, from the origin point was calculated, then the coordinates of intersection

point can be found. 𝑑 can be calculated by substituting coordinates of 𝑝 into plane

equation in terms of 𝑑 and Ω.

Figure 3.23 Representation of source and intersection point

𝑑

𝑝(𝑥, 𝑦, 𝑧)

𝑝0(𝑥0, 𝑦0, 𝑧0) ΩሬሬԦ

𝑧

𝑥

𝑦

𝜃

𝜙

𝑝 = 𝑝0 + Ω𝑑

𝑥 = 𝑥0 + Ωx𝑑

𝑦 = 𝑦0 + Ωy𝑑

𝑧 = 𝑧0 + Ωz𝑑

𝑛ሬԦ

𝑝(𝑥, 𝑦, 𝑧)
𝑑

𝑝0(𝑥0, 𝑦0, 𝑧0)

ΩሬሬԦ

41

Plane equation,

𝑛𝑥(𝑥 − 𝑥1) + 𝑛𝑦(𝑦 − 𝑦1) + 𝑛𝑧(𝑧 − 𝑧1) = 0

Line equations,

𝑥 = 𝑥0 + Ωx𝑑 𝑦 = 𝑦0 + Ωy𝑑 𝑧 = 𝑧0 + Ωz𝑑

Substitute line equations into plane equations,

𝑛𝑥(𝑥0 + Ωx𝑑 − 𝑥1) + 𝑛𝑦(𝑦0 + Ωy𝑑 − 𝑦1) + 𝑛𝑧(𝑧0 + Ωz𝑑 − 𝑧1) = 0

Solve for 𝑑,

 𝑑 =
𝑛𝑥(𝑥1 − 𝑥0) + 𝑛𝑦(𝑦1 − 𝑦0) + 𝑛𝑧(𝑧1 − 𝑧0)

𝑛𝑥Ω𝑥 + 𝑛𝑦Ω𝑦 + 𝑛𝑧Ω𝑧
 (39)

Then, the coordinates of intersection point are calculated, 𝑝(𝑥, 𝑦, 𝑧)

𝑥 = 𝑥0 + Ωx𝑑

𝑦 = 𝑦0 + Ωy𝑑

𝑧 = 𝑧0 + Ωz𝑑

(40)

Finding the intersection point is not enough because the element side is just a region in

the plane. For the intersection point to be used in view factor calculations, it must be on

the element side. For example, a point like the one shown in Figure 3.24 is not

considered. The function isOnSurface() is used to check if a point is on the element side.

Figure 3.24 Testing intersection point on target surface

𝑝(𝑥, 𝑦, 𝑧)

𝑃𝑙𝑎𝑛𝑒

Element Side

42

The function isIntersected(point,direction,sideMap) is used to test if rays are

intersected with element sides. It takes the source point, ray’s direction, and side map of

element side wanted to be checked. The isIntersected() is a Boolean function, meaning If

a ray intersect element side, it returns true. Otherwise, it returns false.

3.4.13 TESTING VISIBILITY OF ELEMENT SIDES

Because obstacles can influence the view factors, another important thing that

needs to be checked is blocking surfaces. As mentioned before, the rays are considered

active until they reach a surface. View factors are affected by intermediate surfaces

between the source point and target surface because they will prevent radiating sides

from viewing each other. The distance to target boundary 𝑑𝑡𝑎𝑟𝑔𝑒𝑡, shown in Figure 3.25,

can be calculated since target boundary is predefined in input file.

Visibility testing requires all element sides in a geometry to be checked. The

algorithm calculates the distances to all elements that might be struck by rays. If a shorter

distance than the one to target is detected, it is understood that there is a blocking surface.

Then the ray is removed from view factor calculations.

const bool

ViewFactorBase::isIntersected(const Point & p1,

 const Point & dir,

 std::map<unsigned int,

 std::vector<Point>> map) const

{

 const Point n = getNormal(map);

 const Point pR = getRandomPoint(map);

 Real d = (n*(pR-p1))/(n*dir);

 const Point p2(p1 + d*dir);

 if (isOnSurface(p2,map))

 return true;

 else

 return false;

}

43

Figure 3.25 Testing visibility of target surface

The function, isVisible(sideMap,sideMap), is used to test if there is a blocking

surface between the origin and target element side. It loops over all element sides in mesh

and finds potential target elements that are within along path of ray. The distance from

ray’s origin to potential target element side is needed to understand whether it is blocking

the actual target element by comparing it with 𝑑𝑡𝑎𝑟𝑔𝑒𝑡.

𝑑

𝑑𝑡𝑎𝑟𝑔𝑒𝑡

const bool

ViewFactorBase::isVisible(const std::map<unsigned int,

std::vector<Point>> & master_side_map,const std::map<unsigned int,

std::vector<Point>> & slave_side_map) const

{

 if (isSidetoSide(master_side_map, slave_side_map) == false)

 return false;

 const Point master_center = getCenterPoint(master_side_map);

 const Point slave_center = getCenterPoint(slave_side_map);

 Real d1 = (master_center - slave_center).norm();

 Point dir = (slave_center - master_center)/d1;

 Real d2{0};

 for (const auto & t : _mesh.buildSideList())

 {

 auto elem_id = std::get<0>(t);

 auto side_id = std::get<1>(t);

 auto bnd_id = std::get<2>(t);

 Elem * el = _mesh.elemPtr(elem_id);

 std::unique_ptr<const Elem> el_side = el-

>build_side_ptr(side_id);

 std::map<unsigned int, std::vector<Point>> side_map;

 unsigned int n_n = el_side->n_nodes();

44

3.4.14 MONTE CARLO CALCULATIONS

The functions described so far perform calculations related to geometry, while

providing the basis for MC simulation. View factor calculations done using Monte Carlo

simulation relies on tracking rays and counting how many of them strike the desired

element sides.

 The number of rays and number of source points are input parameters for Monte

Carlo simulations. UserObject model gives the user a chance to define both in the input

file. In model, a separate member function, which is doMonteCarlo(), is defined in

ViewFactorBase class for Monte Carlo calculations. The function takes number of rays,

number of source points and side maps of source and target element sides as function

argument. It calculates surface normal for both sides by getNormal(), samples random

source point location by getRandomPoint(), samples random direction by

getRandomDirection(). At the end, it calculates view factor as a ratio of total intersected

rays to total number of rays and returns it. Figure 3.26 is flow chart for doMonteCarlo()

function, and the one in Figure 3.27 is the flow chart for ViewFactor model.

 for (unsigned int i = 0; i < n_n; i++)

 {

 const Node * node = el_side->node_ptr(i);

 Point node_p((*node)(0), (*node)(1), (*node)(2));

 side_map[i].push_back(node_p);

 }

 const Point side_center = getCenterPoint(side_map);

 d2 = (master_center - side_center).norm();

 if (isSidetoSide(master_side_map, side_map) &&

isIntersected(master_center, dir, side_map) &&

 d2 < d1)

 {

 return false;

 }

 }

 return true;

}

45

const Real

ViewFactorBase::doMonteCarlo(std::map<unsigned int,

std::vector<Point>> master_side_map,

 std::map<unsigned int,

std::vector<Point>> slave_side_map,

 unsigned int _sourceNumber,

 unsigned int _samplingNumber)

{

 const Point master_elem_normal = getNormal(master_side_map);

 unsigned int counter{0};

 Real viewfactor_per_elem{0};

 Real viewfactor_per_src{0};

 for (size_t src = 0; src < _sourceNumber; src++)

 {

 viewfactor_per_src = 0;

 const Point source_point = getRandomPoint(master_side_map);

 counter = 0;

 for (size_t ray = 0; ray < _samplingNumber; ray++)

 {

 const Point direction =

getRandomDirection(master_elem_normal);

 const Real theta =

acos((direction*master_elem_normal)/(direction.norm()*master_elem_

normal.norm())); // Radian

 if (theta < _PI/2)

 {

 if (isIntersected(source_point, direction,

slave_side_map)) // check Intersecting

 {

 counter++;

 }

 }

 }

 viewfactor_per_src = (counter * 1.0) / _samplingNumber;

 viewfactor_per_elem += viewfactor_per_src;

 }

 viewfactor_per_elem *= (1.0/_sourceNumber);

 return viewfactor_per_elem;

}

46

Figure 3.26 Flow chart for Monte Carlo calculations

Calculate Average View Factor

Yes

Yes No

No

No

Return Average

View Factor

i > NS

j > NR

Is intersected

with target?

Count rj as intersected

Sample random ray (rj)

Monte Carlo

Calculations

Number of Source Points (NS)

Number of Rays (NR)

Sample random source point (si)

Calculate View Factor for si

Yes

j = j+1

i = i+1

47

Figure 3.27 Flow chart for ViewFactor model

Yes

Yes No

No

No

Store View

Factors

i > NE

j > ME

Is ej visible

for ei ?

Do Monte Carlo Calculations

Element j (ej)

View Factor

Model

Number of Elements in boundary m (ME)

Number of Elements in boundary n (NE)

Element i (ei)

Yes

j = j + 1

i = i + 1

48

3.5 RADIATIVE HEAT TRANSFER MODEL

 View factor calculations is only the first part of implementing this new radiative

heat transfer model. When view factors between surfaces are known, then equation (9)

can be solved. In MOOSE Mesh structure, block sides represent boundaries, and

boundary conditions should be assigned to them. For radiative heat transfer calculations,

a new boundary condition model “RadiativeHeatFluxBC” is added to MOOSE. It takes

view factors from “ViewFactor” user object, calculates black body radiative heat flux and

applies it as boundary condition for heat transfer calculations.

Figure 3.28 Radiative heat exchange between elements

 Figure 3.28 shows outgoing fluxes from elements i and j. The net flux is

calculated by subtracting all incoming fluxes from the outgoing fluxes, which is the basis

of the new boundary condition model “RadiativeHeatFluxBC”. The model loops over all

elements in specified boundaries and calculates net heat flux for each element by pairing

with all other elements, which is performed using following equation. The flow chart for

radiative heat transfer model is shown in Figure 3.29.

 𝑞𝑖,𝑛𝑒𝑡 = 𝑞𝑖𝑗 − ∑ 𝐹𝑖𝑗𝑞𝑗𝑖

𝑛

𝑗
= ∑ 𝐹𝑖𝑗(𝑞𝑖𝑗 − 𝑞𝑗𝑖)

𝑛

𝑗
 (41)

𝑞𝑖𝑗
𝑞𝑗𝑖

Element i
Element j

49

Figure 3.29 Flow chart for RadiativeHeatFluxBC model

Calculate qnet

Yes No

No

Return Net

Heat Flux

i > NE

j > ME

Fij and Fji (from View Factor model)

Calculate qij and qji

Element j (ej)

Radiative Heat

Transfer Model

Number of Elements in boundary m (ME)

Number of Elements in boundary n (NE)

Element i (ei)

Yes

j = j + 1

i = i + 1

50

CHAPTER 4

RESULTS AND DISCUSSION

 The implemented view factor model is tested by using simple geometries. The

finite element meshes are generated by using Trelis software. Different geometric

parameters such as height, width, radius and the distance between surfaces, are used to

generate geometries. Analytical view factor values (Fanalytical) are calculated by using the

formulas presented in Appendix D in textbook written by Modest [1]. The percentage

error is calculated by following equation,

 %𝐸𝑟𝑟𝑜𝑟 = 100 ∗
|𝐹𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|

𝐹𝑎𝑛𝑎𝑙𝑎𝑦𝑡𝑖𝑐𝑎𝑙
 (42)

Since the view factors are calculated between the finite element surfaces, which are

flat, not curved, the results obtained for flat geometries such as rectangles, disks, provide

more insight about accuracy of ViewFactor model.

The radiative heat transfer model is tested by a case study which is pellet heating

experiment. The current GapHeatTransfer model in MOOSE is used for comparison of

results.

51

4.1 PARALLEL RECTANGLES

The rectangle surfaces illustrated in Figure 4.1 have h×w dimensions (h-height

and w-width), separated from each other by distance, 𝑑, using hexahedral (HEX8)

elements in the mesh. The results of calculations are presented by following table and

figures.

Figure 4.1 Geometry of parallel rectangles

Table 4.1 View Factors for h=2, w=2, d=2
 View Factors (Fcalculated) for different number of sampling (N)

Run 102 103 104 105 106 107

1 0.197500 0.198000 0.201075 0.199333 0.199678 0.199804

2 0.217500 0.187750 0.199625 0.200857 0.199034 0.199732

3 0.187500 0.201000 0.198500 0.198215 0.199734 0.199555

4 0.237500 0.190750 0.203650 0.198610 0.199910 0.199659

5 0.180000 0.199000 0.201100 0.199988 0.199708 0.199707

6 0.220000 0.196500 0.197725 0.198130 0.199606 0.199692

7 0.190000 0.207500 0.203075 0.200073 0.199661 0.199714

8 0.172500 0.203000 0.198375 0.199153 0.199683 0.199688

9 0.195000 0.199750 0.202125 0.199705 0.199738 0.199716

10 0.212500 0.198250 0.201750 0.200163 0.199603 0.199809

11 0.222500 0.198000 0.199550 0.201615 0.199968 0.199779

12 0.215000 0.198500 0.198900 0.200490 0.200102 0.199753

Mean F 0.203958 0.198167 0.200454 0.199694 0.199702 0.199717

Std Dev 0.019669 0.005118 0.001951 0.001060 0.000260 0.000069

Std Error 0.005678 0.001478 0.000563 0.000306 0.000075 0.000020

Fanalytical 0.199825 0.199825 0.199825 0.199825 0.199825 0.199825

%Error 2.068530 0.829841 0.314911 0.065338 0.061460 0.053828

d
w

h

52

Figure 4.2 View factor for parallel plates for different sampling number

Figure 4.3 Change of average view factor with sampling number

Evidently, as the number of sampling increases, results become more precise (see

Figure 4.3). Furthermore, the standard deviation of 12 runs, shown by the red bars in

figure, and the absolute percent error decreases with increasing sampling as shown in

Figure 4.4. At a sampling rate of 105, the standard deviation and standard error are

0.185

0.190

0.195

0.200

0.205

0.210

1 2 3 4 5 6 7 8 9 10 11 12

F

Run #

View Factor
N=1000 N=10000 N=100000 N=1000000 N=10000000

0.196

0.198

0.2

0.202

0.204

0.206

0.208

0.21

0.212

2 3 4 5 6 7

F m
ea

n

Log(N)

View Factor change with Number of Sampling

53

converged. Also, the absolute percent error drops below 0.1%, and thus, sampling

number of N=105 can be used for similar geometries.

Figure 4.4 Change of percentage error with sampling number

The distance between rectangles is also an important parameter. In Table 4.2,

calculated view factors are presented for square plates with different d/h ratios for N=105

rays. The error increases as d/h ratio is getting larger because as rays are spreading in

radial direction, following Inverse Square Law (See section 3.4.10). Their probability of

hitting the target surface decreases due to increased distance, coming from the geometric

dilution due to point-source radiation into three-dimensional space. The rays used in the

MC simulations in this study follow the inverse square law, since they are basically

quantities emitted from a source point. It can be clearly seen from Figure 4.5 that the

average view factor profile follows the inverse square law.

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

%
 E

rr
o

r

Log(N)

%Error change with Number of Sampling

54

Table 4.2 View Factors for different plate dimensions
 d/h

Run 0.5 1.0 2.0 4.0 8.0 16.0

1 0.416150 0.201075 0.067850 0.019475 0.005200 0.001525

2 0.409650 0.199625 0.068925 0.018975 0.004325 0.001175

3 0.413450 0.198500 0.069450 0.019500 0.005425 0.001425

4 0.414050 0.203650 0.068350 0.019900 0.004975 0.001475

5 0.414850 0.201100 0.069100 0.019300 0.005150 0.001550

6 0.417500 0.197725 0.068300 0.019150 0.005275 0.001275

7 0.412200 0.203075 0.066475 0.018975 0.005050 0.001375

8 0.414850 0.198375 0.070075 0.019300 0.005000 0.001300

9 0.409450 0.202125 0.067725 0.019075 0.005300 0.001150

10 0.412200 0.201750 0.068175 0.019425 0.004425 0.001225

11 0.414850 0.199550 0.068600 0.019375 0.005125 0.001475

12 0.411575 0.198900 0.068075 0.018750 0.005025 0.001125

Mean F 0.413398 0.200454 0.068425 0.019267 0.005023 0.001340

Std Dev 0.002468 0.001951 0.000921 0.000305 0.000331 0.000151

Std Error 0.000712 0.000563 0.000266 0.000088 0.000096 0.000044

Fanalytical 0.415253 0.199825 0.068590 0.019107 0.004922 0.001240

%Error 0.446804 0.314911 0.239962 0.835866 2.040751 8.016045

Figure 4.5 Change of average view factor with rectangle dimensions

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

F m
ea

n

d/h

View factor change with d/h

55

Figure 4.6 Change of percentage error with rectangle dimensions

4.2 PERPENDICULAR RECTANGLES

In the case of perpendicular rectangles, one has a height h, while the other has

width w, both sharing a common edge with size d (see Figure 4.7), i.e., the rectangles

have h×d and w×d dimensions.

Figure 4.7 Geometry of perpendicular rectangles

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

%
 E

rr
o

r

d/h

%Error change with d/h

w

h

d

56

Table 4.3 View Factors for h=3, w=3, d=4
 View Factors (F) for different number of sampling (N)

Run 102 103 104 105 106

1 0.220000 0.221417 0.221892 0.222799 0.222488

2 0.253333 0.223083 0.219300 0.223012 0.219740

3 0.254167 0.228417 0.227242 0.220751 0.224597

4 0.246667 0.227583 0.215125 0.222885 0.225348

5 0.224167 0.234167 0.222967 0.219128 0.222387

6 0.247500 0.233833 0.224033 0.221029 0.219920

7 0.269167 0.219417 0.220642 0.221340 0.223036

8 0.270000 0.227167 0.218150 0.219530 0.222333

9 0.230000 0.211250 0.222925 0.223183 0.220520

10 0.223333 0.226833 0.220450 0.222948 0.217597

11 0.266667 0.216167 0.225700 0.223361 0.225435

12 0.245000 0.213333 0.223050 0.223543 0.220199

Mean F 0.245833 0.223556 0.221790 0.221959 0.221967

Std Dev 0.018056 0.007473 0.003321 0.001545 0.002441

Std Error 0.005212 0.002157 0.000959 0.000446 0.000705

Fanalytical 0.2187 0.2187 0.2187 0.2187 0.2187

%Error 12.406683 2.220203 1.412742 1.490207 1.493675

Figure 4.8 Change of average view factor with sampling number

0.215

0.220

0.225

0.230

0.235

0.240

0.245

0.250

0.255

2 3 4 5 6

F m
ea

n

Log(N)

View factor change with Number of Sampling

57

Figure 4.8 shows the average view factor as a function of the number of rays,

where the error bars represent their standard deviations. It is noticeable that the average

view factor values fluctuate less compared to view factor values of the parallel rectangles.

The percent error has the same profile. The reasonable sampling rate for this case is 104,

because the view factor average values and their standard deviations, as well as the error

are converged at this value.

Figure 4.9 Change of percentage error with sampling number

The effect of the rectangles’ dimensions on view factor, specifically the h/w ratio,

is also investigated. The results are detailed in table and figure, showing that the average

view factor increases as the dimension ratio gets larger. Note that the h/w is symmetric

around 1, meaning increasing or decreasing the ratio by some amount will have the same

effect on the calculations.

0

2

4

6

8

10

12

14

2 3 4 5 6

%
 E

rr
o

r

Log(N)

%Error change with Number of Samping

58

Table 4.4 View Factors for different rectangle dimensions
 h/w

Run 1.0 1.5 2.0 2.5 3.0 3.5

1 0.221892 0.247080 0.259383 0.268727 0.275050 0.274044

2 0.219300 0.243660 0.260983 0.270260 0.267558 0.276206

3 0.227242 0.247080 0.258275 0.270291 0.269942 0.273187

4 0.215125 0.247080 0.262108 0.260344 0.271200 0.273187

5 0.222967 0.250358 0.262225 0.267273 0.275717 0.269248

6 0.224033 0.243667 0.259800 0.267922 0.266842 0.270155

7 0.220642 0.245670 0.262367 0.266995 0.272658 0.274875

8 0.218150 0.244012 0.258433 0.266995 0.270058 0.276685

9 0.222925 0.244012 0.254233 0.270313 0.272642 0.276999

10 0.220450 0.248107 0.259908 0.270260 0.268792 0.272384

11 0.225700 0.248107 0.254850 0.263211 0.271467 0.277737

12 0.223050 0.242250 0.261442 0.268322 0.265950 0.271606

Mean F 0.221790 0.245924 0.259501 0.267576 0.270656 0.273859

Std Dev 0.003321 0.002418 0.002708 0.003066 0.003082 0.002740

Std Error 0.000959 0.000698 0.000782 0.000885 0.000890 0.000791

Fanalytical 0.2187 0.246 0.2592 0.2664 0.2707 0.2734

%Error 1.412742 0.031064 0.115966 0.441473 0.016131 0.168038

Figure 4.10 Change of average view factor with different rectangle dimensions

0.220

0.230

0.240

0.250

0.260

0.270

0.280

1.0 1.5 2.0 2.5 3.0 3.5

F m
ea

n

h/w

View factor change with h/w

59

4.3 COAXIAL DISKS

Unlike the previous geometries, a circular geometry with tetrahedral (TET4)

elements are used in view factor calculations.

Figure 4.11 Geometry of coaxial disks

Coaxial disk geometries with radii r1 and r2, on a distance, d, are considered (see Figure

4.11), and the influence of the radii and distance on the view factor is investigated. N=104

rays are used in calculations.

Table 4.5 View factors for r1=2, r2=2, d=2
 Runs

F12
0.371386 0.371386 0.371386 0.371386 0.371386 0.371386

0.370245 0.370245 0.370245 0.370245 0.370245 0.370245

Mean F 0.37128125

Std Dev 0.00058474

Std Error 0.00016880

Fanalytical 0.38196601

%Error 2.79730681

Table 4.6 View factors for different separation distance

d/r

1.0 2.0 3.0 4.0 5.0 6.0

F12 0.373800 0.164323 0.088396 0.053096 0.036141 0.024605

Fanalytical 0.381966 0.171573 0.091673 0.055728 0.037088 0.026334

%Error 2.137890 4.225537 3.575299 4.723991 2.553609 6.567694

d

r1

r2

60

Figure 4.12 Change of average view factor with distance to radius ratio

Table 4.7 View factors for different disk dimensions

r1/r2

1.0 2.0 3.0 4.0 5.0 6.0

F12 0.167250 0.108821 0.070338 0.045622 0.030225 0.022339

Fanalytical 0.171573 0.117218 0.075049 0.049485 0.034315 0.024936

%Error 2.519565 7.163402 6.278143 7.806354 11.91935 10.41428

Figure 4.13 Change of average view factor with disk radius

0

1

2

3

4

5

6

7

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6

%
Er

ro
r

F m
ea

n

d/r

View factor change with d/r

0

2

4

6

8

10

12

14

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

1 2 3 4 5 6

%
Er

ro
r

F m
ea

n

r1/r2

View factor change with r1/r2

61

4.4 COAXIAL CYLINDERS

Radiation surfaces are not necessarily always flat, they might have convex or/and

concave areas. To study these animalities in the surfaces, coaxial cylinders, are

considered in the calculations, shown in Figure 4.14. For these calculations N=104 rays

are used.

Figure 4.14 Geometry of coaxial cylinders

Table 4.8 View factors for r1=1, r2=2.5, h=6

 F12 F21

Runs

0.829912 0.829912 0.829912 0.322021 0.323177 0.322091

0.827846 0.827846 0.827846 0.323519 0.322761 0.323082

0.829912 0.829912 0.829912 0.322639 0.322345 0.322516

0.827846 0.827846 0.827846 0.321702 0.322905 0.323154

Mean F 0.8278304 0.3226572

Std Dev 0.0012667 0.0005473

Std Error 0.0003656 0.0001581

Fanalytical 0.8296384 0.3318552

%Error 0.2179272 2.7719262

r1

r2

h

62

4.5 CONCENTRIC SPHERES

 The suggested model is also tested for concentric spheres, shown in Figure 4.15.

Since inner sphere is within the outer sphere, it is expected that view factor between

exterior of the inner sphere and interior of the outer sphere is equal to 1. Calculations

were performed using N=104 rays, and the results are presented in Table 4.9.

Figure 4.15 Geometry of concentric spheres

Table 4.9 View factors for r1=1, r2=3
Runs

F12
1.00361 1.00466 1.00016 1.00353 1.00163 1.0063

1.00175 1.00025 1.00451 1.00438 1.00264 1.00344

Mean F 1.003071667

Std Dev 0.001854041

Std Error 0.000535216

Fanalytical 1.0

%Error 0.307166667

r1

r2

63

4.6 CASE STUDY: MODELING OF PELLET HEATING EXPERIMENT

 To test the performance of view factor model and radiative heat transfer model,

ongoing pellet heating experiment at USC is modeled in MOOSE. The pellet is heated by

joule heating via electrodes touching the pellet on opposite sides. Shown in Figure 4.16 is

the half geometry of the experimental setup.

Figure 4.16 Geometry representation of experimental setup

There are three layers of materials around the pellet in purpose of insulation and

stability. The dimensions and materials used in layers is given in Table 4.10.

Table 4.10 Geometrical parameters for experimental setup
Material Inner Radius(m) Outer Radius (m) Height (m)

Pellet UO2 - 0.005461 0.01

Tube 1 BN 0.005588 0.007747 0.01

Susceptor Mo 0.007874 0.009652 0.01

Tube 2 BN 0.009906 0.011760 0.01

UO2 Pellet

Boron Nitride

Molybdenum
Boron Nitride

64

Temperature dependent thermal properties of UO2 are used in calculations. A

material model, using the equations given in Table 4.11, is implemented in MOOSE for

UO2. For other materials constant thermal properties given in Table 4.12 are used.

Table 4.11 Temperature Dependent UO2 Thermal properties [13]

Thermal
Conductivity

(W/mK)

100

7.5408 + 1.7692 ∗ 10−2 𝑇 + 3.6142 ∗ 10−6 𝑇2

+ 2.0239
exp (−16350/𝑇)

𝑇2.5

Density
(kg/m3)

11049 − 0.334 ∗ 𝑇 + 3.9913 ∗ 10−5 𝑇2 − 2.7649 ∗ 10−8 𝑇3

Specific Heat
(J/kgK)

193.218 − 2.6438 ∗ 106 𝑇−1 + 0.325711 𝑇 − 3.11971 ∗ 10−4 𝑇2

+ 1.1681 ∗ 10−7 𝑇3 − 9.7523 ∗ 10−12 𝑇4

Table 4.12 Thermal properties of materials [14,15]
Thermal Conductivity

(W/mK)
Density
(kg/m3)

Specific Heat
(J/kgK)

BN 80 1900 810

Mo 138 10220 250

In the MOOSE model, the geometry is surrounded by a hemisphere surface to

define ambient temperature (320 K) as boundary condition, see Figure 4.17.

Figure 4.17 Computation model of experimental setup

Wall

65

Heat is generated in the pellet region by joule heating as a result of the voltage

difference between electrodes.

Electrical Fourier Equation,

 𝐽𝑥 = 𝜎𝑥

𝛥𝑉

𝛥𝑥
 (43)

where 𝐽𝑥 : current flux [𝐴𝑚𝑝/𝑚2]

 𝜎𝑥 : electrical conductivity, 1/𝜌𝑥 , [1/𝛺𝑚]

 𝜌𝑥 : electrical resistivity, 1/𝜎𝑥 , [𝛺𝑚]

 𝛥𝑥 : spatial coordinate in the direction of current flow [𝑚]

 𝛥𝑉 : voltage difference [𝑣𝑜𝑙𝑡]

Joule Heating,

 𝑄 = 𝐽2𝜌 (44)

where 𝑄 : joule heating power [𝑊/𝑚3]

Then heat conduction equation with joule heating source term becomes,

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝛥 ∙ 𝑘𝛥𝑇 − 𝑄 = 0 (45)

Electrical conductivity of UO2 is found from literature and assumed as constant. [16]

𝜎𝑥 = 1 𝛺𝑚−1

The applied voltage on electrodes is equal to 10V and constant during experiment.

The volumetric heat generation is calculated as 82 MW/m3 by equations (43) and (44)

according to constant.

66

MOOSE currently has a gap heat transfer model, which is used to calculate heat

transfer between fuel pellet surface and cladding inner surface. It is known that

MOOSE’s GapHeatTransfer can calculate heat transfer in small gaps accurately, so It can

be used to verify RadiativeHeatFluxBC results.

For verification, the wall is removed from the geometry shown in Figure 4.17.

Only concentric cylinders are used in simulations. A constant volumetric heat generation

is defined in pellet. According to the results shown in Figure 4.18, the centerline

temperature profiles are overlapping well. It can be concluded that RadiativeHeatFluxBC

model is able to calculate accurately the radiative heat transfer between surfaces.

Figure 4.18 Pellet centerline temperature for only concentric cylinders

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

T
(K

)

Time (sec)

Centerline Temperature

RadiativeHeatFluxBC

GapHeatTransfer

67

Next, calculations are repeated for the actual geometry shown in Figure 4.17.

Constant voltage of 10V is used for this calculations. The centerline temperature change,

radial and axial temperature profiles are shown in following figures.

Figure 4.19 Pellet centerline temperature for computational geometry

Figure 4.20 Axial temperature profile in pellet

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

T
(K

)

Time (sec)

Centerline Temperature

RadiativeHeatFluxBC

GapHeatTransfer

Mixed

1250

1300

1350

1400

1450

1500

1550

0 0.002 0.004 0.006 0.008 0.01

T
(K

)

z (m)

Axial Temperature Distribution

RadiativeHeatFluxBC

GapHeatTransfer

Mixed

68

Figure 4.21 Radial temperature profile in pellet

All surfaces shown in Figure 4.17 are considered as radiating. The lines labeled

by “Mixed” in figures represent the results obtained from using GapHeatTransfer model

in concentric cylinders and RadiativeHeatFluxBC model for top surfaces in the same

simulation. Mixed results overleap well with the RadiativeHeatFluxBC results.

 GapHeatTransfer model makes assumptions for radiation heat transfer

calculations. These are diffusion approximation and infinite parallel planes. These

assumptions are reasonable for small gap geometries which view factor is almost unity.

For larger gap geometries, view factor is smaller than 1, and thus GapHeatTransfer model

might not provide accurate results. RadiativeHeatFluxBC model is more flexible and can

provide more accurate results because it counts view factors.

In figures, RadiativeHeatFluxBC results are higher compared to GapHeatTransfer

model results. The difference purely results from view factors. If the view factor is

smaller than 1, less heat will be removed from surface. This causes an increase in

temperature levels.

1240

1260

1280

1300

1320

1340

1360

1380

0 0.001 0.002 0.003 0.004 0.005

T
(K

)

x(m)

Radial Temperature Distribution

RadiativeHeatFluxBC

GapHeatTransfer

Mixed

69

CHAPTER 5

CONCLUSION

Two new model have been implemented to MOOSE for view factor and radiative

heat transfer calculations. In view factor model, the MC method is used and the user

object “ViewFactor” is created. In radiative heat transfer model, calculations are done by

assuming surfaces are black, and a boundary condition model “RadiativeHeatFluxBC” is

added to MOOSE.

The MC method provides flexibility to calculate view factors for any kind of

geometry. Although there are some drawbacks of MC method such as statistical error and

computing time, by using high performance computers they could be minimized.

There is still work that can be done to improve implemented models. The view

factor model is currently based on MC method. Other methods can be added as future

work to give user option. The radiative heat flux model is calculating heat transfer by

assuming surfaces are black. As a future work, it can be modified in order to use for

radiative heat exchange between gray or diffuse surfaces, considering absorption,

transmission and reflection.

70

BIBLIOGRAPHY

[1] Modest, M.F. 1993. Radiative Heat Transfer. McGraw-Hill. New York.

[2] Howell, J.R. 1998. The Monte Carlo method in radiative heat transfer. Journal of

Heat Transfer 120 547-560.

[3] Metropolis, Nicholas, and Ulam, S. 1949. The Monte Carlo Method. Journal of

American Statistical Association. 44-247 335-341.

[4] Junuthula Narasimha Reddy. An introduction to the finite element method, volume 2.

McGraw-Hill New York, 1993.

[5] Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandie. Moose:

A parallel computational framework for coupled systems of nonlinear equations.

Nuclear Engineering and Design, 239(10):1768–1778, 2009.

[6] JohnW. Peterson, Alexander D. Lindsay, Fande Kong, Overview of the

incompressible Navier-Stokes simulation capabilities in the MOOSE framework,

Advances in Engineering Software, 119:68-92, 2008.

[7] Santosh B. Bopche, Arunkumar Sridharan, Determination of view factors by contour

integral technique, Annals of Nuclear Energy, 36: 1681-1688, 2009.

[8] Arvind Narayanaswamy, An analytic expression for radiation view factor between

two arbitrarily oriented planar polygons, International Journal of Heat and Mass

Transfer, 90: 841-847, 2015.

[9] Lei Yang, Wenzhen Chen, Lei Luo, Xinwen Zhao, Calculation of radiation heat

transfer view factors among fuel rod bundles based on CFD method, Annals of

Nuclear Energy, 71: 462-466, 2014.

[10] Matthew Barry, Justin Ying, Michael J. Durka, Corey E. Clifford, B.V.K. Reddy,

Minking K. Chyu, Numerical solution of radiation view factors within a

thermoelectric device, Energy, 102:427-435, 2016.

[11] M. Mirhosseini, A. Saboonchi, View Factor calculation using Monte Carlo method

for a 3D strip element to circular cylinder, Energy Procedia 142 513-518, 2017.

71

[12] P.Mahanta, Subhash C. Mishra, Collapsed dimension method applied to radiative

transfer problems in complex enclosures with participating medium, Numerical Heat

Transfer, 42:4, 367-388, 2010.

[13] Uffelen P.V., Konings R.J.M., Vitanza C., Tulenko J. (2010) Analysis of Reactor

Fuel Rod Behavior. In: Cacuci D.G. (eds) Handbook of Nuclear Engineering, 1519-

1627.

[14] Technical Products Inc. Boron Nitride Grade AX05 Material Specifications,

www.technicalproductsinc.com.

[15] International Molybdenum Association. Molybdenum Properties,

https://www.imoa.info/molybdenum/molybdenum-properties.php

[16] Shoji Lida, Electrical Properties of Non-Stoichiometric Uranium Dioxide, Japanese

Journal of Applied Physics, 4-11, 1

	Implementation of View Factor Model and Radiative Heat Transfer Model in MOOSE
	Recommended Citation

	tmp.1572010570.pdf.AP76j

