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ABSTRACT  

 
View factors are functions that represent the geometric relationship between 

surfaces. They are important parameters for radiative heat transfer calculations. View 

factor catalogues are available for simple geometries in the current literature. However, in 

the case of complicated geometry, analytical or numerical methods are needed to evaluate 

view factors. The Monte Carlo (MC) method is the most flexible one among numerical 

methods, which are used to calculate view factors, since it can be applied to any 

geometry. 

When experimental studies are not affordable to conduct, modeling of 

engineering problems gains more importance. Idaho National Laboratory (INL)’s finite 

element framework Multiphysics Object Oriented Simulation Environment (MOOSE) is 

a robust engineering tool to model physical problems including heat transfer. However, 

MOOSE doesn’t have a method to calculate view factors. Hence, a method is needed to 

calculate radiative heat transfer using view factors. Implementing a new model in 

MOOSE and using it in heat transfer calculations for an arbitrary geometry will enable 

the detailed evaluation of radiative heat transfer in complex geometries. 

In this study, a nuclear fuel pellet heating and cracking experimental case is 

modeled as a sample case by using the new MOOSE methods that are implemented in 

this study. The effect of radiative heat transfer on radial and axial temperature profile is 

evaluated.
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CHAPTER 1 

 

INTRODUCTION AND MOTIVATION 

 
Heat or energy is one of the main driving forces for transition from non-

equilibrium state to steady state for a system. The system might be as complicated as a 

nuclear power plant or as simple as an ice cream. In almost all areas of science, it is 

essential to account for heat transfer to analyze the system correctly. 

Heat is transferred by three mechanisms which are conduction in solids, 

convection of fluids and radiation between surfaces that are at high enough temperatures. 

In processes which require high temperatures such as power generation, combustion 

applications, heat treatment experiments and solar energy applications radiative heat 

transfer becomes significant and should be taken into consideration besides conduction 

and convection.[1]  

In nuclear science, modeling is important because of the difficulty and safety 

concerns in experimental studies. Heat transfer, neutron transport, thermal hydraulic, 

fluid dynamics, material science are popular topics that researchers are developing 

computer codes to analyze systems. The finite element framework Multiphysics-Object-

Oriented-Simulation-Environment (MOOSE), which is developed by Idaho National 

Laboratory (INL), is a powerful tool to model variety of engineering problems including 

nuclear science related problems such as fuel behavior under operating conditions. Since 

the temperature levels are very high for a nuclear reactor, the radiative heat transfer 

becomes dominant and should be modeled. Physically, radiative heat transfer occurs 



2 

between surfaces, so the geometric relationship between surfaces affects the heat 

exchange. However, the current radiative heat transfer model in MOOSE calculates heat 

transfer by assuming surfaces are infinitely parallel to each other and doesn’t consider 

view factors in calculations. 

In this research, it is aimed to implement new MOOSE models which are able to 

calculate the view factors and radiative heat transfer between surfaces. After literature 

review and doing some research to guide in choosing the right method, because of its 

applicability and feasibility for complex geometries, being one of the most efficient and 

commonly used numerical solution technique, Monte Carlo (MC) method is chosen in 

order to use in view factor calculations.
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CHAPTER 2 

 

LITERATURE REVIEW 

 
2.1 THEORY 

2.1.1 RADIATIVE HEAT TRANSFER 

The radiative heat transfer is energy exchange between surfaces via 

electromagnetic waves. The heat coming from sun, feeling hot around camp fire can be 

given as everyday examples. All materials continuously emit and absorb electromagnetic 

waves or photons depending on surface temperature. The radiative heat transfer rates are 

generally proportional to differences in temperature of radiating materials to the fourth 

power. [1] 

 𝑞 ∝ 𝑇4 − 𝑇∞
4  (1) 

As it can be inferred from equation (1), the radiative heat transfer becomes 

dominant at high temperatures. Analyzing radiative heat transfer is more difficult 

compared to conduction and convection because of higher order temperature relation. 

Electromagnetic waves striking a surface may be reflected, absorbed or 

transmitted. If the wave is attenuated in medium, then medium is called as opaque. If it 

passes through medium without attenuation, the medium is called as transparent. There is 

an important definition used in radiative heat transfer calculations: black surface or black 

body, which is an opaque surface does not reflect any radiation.
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Another important term, emissive power, (E), is defined as the radiative heat flux 

emitted from a surface in all directions and calculated as, 

 𝐸(𝑇) = ∫ 𝐸𝑣(𝑇, 𝑣)𝑑𝑣
∞

0

 (2) 

and blackbody emissive power is calculated by Stefan-Boltzman Law, 

 𝐸𝑏(𝑇) = ∫ 𝐸𝑏𝑣(𝑇, 𝑣)𝑑𝑣
∞

0

= 𝑛2𝜎𝑇4 (3) 

where 𝜎 = 5.67𝑒 − 8
𝑊

𝑚2𝐾4
 is known as Stefan-Boltzmann constant 

           𝑛 is refractive index (𝑛 ≅ 1 for vacuum and gases) 

To describe radiative heat flux leaving a surface, it is inadequate to use only 

emissive power. The direction dependent quantity, radiative intensity, (I), can be used 

instead. 

 𝐼(𝑟, �̂�) = ∫ 𝐼𝜆(𝑟, �̂�, 𝜆)𝑑𝜆
∞

0

 (4) 

Integrating radiative intensity over all possible directions will give total energy emission 

from surface, 

 𝐸(𝑟) = ∫ 𝐼(𝑟, �̂�) �̂� ∙ �̂� 𝑑𝛺
2𝜋

 (5) 

 

 
Figure 2.1 An arbitrary black enclosure 

𝐻𝑜 
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Figure 2.1 shows a black-walled enclosure of arbitrary geometry. The temperature 

distribution is indicated by 𝑇(𝑟). Energy balance for a small area of 𝑑𝐴 gives, 

 𝑞(𝑟) = 𝐸𝑏(𝑟) − 𝐻(𝑟) (6) 

𝐻(𝑟) is the irradiation onto 𝑑𝐴 including both from entire enclosure and from outside. 

 𝐻(𝑟) = ∫ 𝐸𝑏(𝑟′)𝑑𝐹𝑑𝐴−𝑑𝐴′

𝐴

+ 𝐻𝑜(𝑟) (7) 

 𝑞(𝑟) = 𝐸𝑏(𝑟) − ∫ 𝐸𝑏(𝑟′)𝑑𝐹𝑑𝐴−𝑑𝐴′

𝐴

− 𝐻𝑜(𝑟) (8) 

where 𝑑𝐹𝑑𝐴−𝑑𝐴′ is the view factor between surface 𝑑𝐴 and 𝑑𝐴′. 

If the enclosure is divided into N isothermal sub-surfaces, the average heat flux becomes 

 𝑞𝑖 = 𝐸𝑏𝑖 − ∑ 𝐸𝑏𝑗𝐹𝑖−𝑗

𝑁

𝑗=1

− 𝐻𝑜(𝑟) (9) 

where 𝐹𝑖−𝑗 is the view factor between surface 𝐴𝑖 and 𝐴𝑗. 

 

2.1.2 VIEW FACTORS 

The radiative energy transfer between surfaces is nearly not affected by the  

medium that separates them. The participating media could be vacuum, monoatomic or 

diatomic gases at low temperatures. Such examples include solar collectors, radiative 

space heaters, illumination problems etc. Radiative heat exchange between surfaces can 

be analyzed by making assumptions of an idealized enclosure and surface properties. [1] 

 The most useful one is assuming that all surfaces are black, which means that 

there is no radiation reflection on surfaces and no direction dependency for radiation 

emission from surface. Reflection, absorption and transmission can be account for more 

realistic radiative heat transfer analyzes. 



 

6 

 There is no range limit for thermal radiation, and if there is no participating 

media, photon will travel unimpeded from one surface to another. Therefore, no matter 

how far it is, surfaces can exchange radiative energy with one another. How much energy 

would be exchanged depends on surface areas, the distance separates them and their 

orientation. All these are represented by a geometric function called view factor. It is 

sometimes called as configuration factor, angle factor and shape factor. [1] 

 

 

Figure 2.2 Radiative exchange between two infinitesimal surface elements 

 

Figure 2.2 illustrates the radiative exchange between two infinitesimal surface elements 

𝑑𝐴𝑖 and 𝑑𝐴𝑗 . The view factor for these surfaces determines how much energy leaves an 

arbitrary surface element toward the other one. For surface 𝑑𝐴𝑖 and 𝑑𝐴𝑗  in figure, view 

factor is defined as, 

 𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
=

𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑑𝐴𝑖 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑜𝑤𝑎𝑟𝑑 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑 𝑑𝐴𝑗

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑑𝐴𝑖

 (10) 
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the heat transfer rate from 𝑑𝐴𝑖 to 𝑑𝐴𝑗  is determined by the radiative intensity as, 

 𝐼(𝑟𝑖)(𝑑𝐴𝑖 cos 𝜃𝑖)𝑑𝛺𝑗 =
𝐼(𝑟𝑖) cos 𝜃𝑖 cos 𝜃𝑗 𝑑𝐴𝑖𝑑𝐴𝑗

𝑆2
 (11) 

total radiative energy leaving 𝑑𝐴𝑖 is called as radiosity and related to intensity as 

 𝐽(𝑟𝑖)𝑑𝐴𝑖 = [𝐸(𝑟𝑖) + 𝜌(𝑟𝑖)𝐻(𝑟𝑖)]𝑑𝐴𝑖 = 𝜋𝐼(𝑟𝑖)𝑑𝐴𝑖 (12) 

Then view factor between two infinitesimal diffuse surfaces is 

 𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
=

cos 𝜃𝑖 cos 𝜃𝑗

𝜋𝑆2
𝑑𝐴𝑗  (13) 

The view factors have an important rule called law of reciprocity which is derived from 

the equation (13), and it says 

 𝑑𝐴𝑖𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗
= 𝑑𝐴𝑗𝑑𝐹𝑑𝐴𝑖−𝑑𝐴𝑗

 (14) 

The definition of view factor can be expanded to include radiative change between two 

finite surfaces shown in Figure 2.3. 

 
Figure 2.3 Radiative exchange between two finite surfaces 
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Similarly, the total energy leaving 𝐴𝑖 toward 𝐴𝑗 is,  

 ∫ ∫ 𝐼(𝑟𝑖)
cos 𝜃𝑖 cos 𝜃𝑗

𝑆2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (15) 

and view factor is defined as  

 𝐹𝐴𝑖−𝐴𝑗
=

∫ ∫ 𝐼(𝑟𝑖)
cos 𝜃𝑖 cos 𝜃𝑗

𝑆2 𝑑𝐴𝑗𝑑𝐴𝑖𝐴𝑗𝐴𝑖

𝜋 ∫ 𝐼(𝑟𝑖)𝑑𝐴𝑖𝐴𝑗

 (16) 

If it is assumed that the intensity leaving 𝐴𝑖 does not vary across the surface, the view 

factor reduces to,  

 𝐹𝐴𝑖−𝐴𝑗
=

1

𝐴𝑖
∫ ∫

cos 𝜃𝑖 cos 𝜃𝑗

𝜋𝑆2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (17) 

Then another version of the law of reciprocity is found, 

 𝐴𝑖𝐹𝐴𝑖−𝐴𝑗
= 𝐴𝑗𝐹𝐴𝑗−𝐴𝑖

 (18) 

If the surface is a part of enclosure geometry, there is also a summation relationship for 

view factors, 

 ∑ 𝐹𝑑𝑖−𝑗

𝑁

𝑗=1

= ∑ 𝐹𝑖−𝑗

𝑁

𝑗=1

= 1 (19) 

 

2.1.3 METHODS FOR VIEW FACTOR CALCULATIONS 

The calculation of view factor between two specified surfaces requires to solve  

the double area integral given in equation (17). Analytical solution of such kind of 

integrals is not easy to evaluate for complex geometries. Therefore, analytical approaches 

or numerical methods are used to handle view factor calculations. 

 



 

9 

 Evaluation methods for view factors can be categorized into three groups, 

1- Direct integration 

2- Special methods 

3- Statistical determination 

The view factor formula (Eq. (17)) can be solved directly by numerical or  

analytical integration methods if the geometry is not too complicated. Area integration 

and contour integration are known methods for direct integration. Furthermore, there are 

special methods using view factor algebra, including reciprocity and summation rules, 

instead of calculating integration.  

Experimental methods can also be used to calculate view factors. Unit sphere 

method introduced as the first experimental method by Nusselt in 1928. It is a powerful 

method to calculate view factors between one infinitesimal and one finite area. Later on, 

ray casting method was developed based on unit sphere method, which is using computer 

graphics technique to construct the projected area. [1] 

Another way to calculate view factors is statistical sampling with Monte Carlo 

(MC) method. MC method is a class of numerical techniques based on the statistical 

characteristics of physical models. The method was developed by early workers trying to 

analyze the potential behavior of nuclear weapons. Experiments were difficult and 

analysis methods were not able to provide accurate prediction. Thus, simulating neutrons 

and tracking their behavior was the solution to understand average weapon behavior. An 

early description of the philosophy behind the MC approach was given by Metropolis and 

Ulam (1949) [2].  
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In view factor calculations, a total number of rays (N) are emitted from a surface 

with identical properties but random directions. Some of the rays will hit target surface 

while others will not. If the number of rays hit is m, then view factor is calculated as, 

 𝐹𝑖𝑗 =
𝑚

𝑁
 (20) 

2.2 LITERATURE REVIEWS 

In literature there are many works done by researchers for view factor 

calculations. Different methods were tested for complex geometries for which 

theoretical formulas cannot be used. 

Bopche and Sridharan (2009) presented an application of contour integral 

technique to calculation of diffuse view factors for elements of nuclear fuel bundle. 

They derived analytical expressions for different cases including two identical 

cylindrical rods, two cylindrical rods with interference by another rod, and between 

one cylindrical rod and a non-concentric cylindrical enclosure. They compared results 

obtain from their expressions with literature and concluded that using infinite length 

approximations in finite length calculations can cause high computational errors. [7] 

Narayanaswamy (2015) has used Nusselt’s unit sphere method to calculate 

view factor between two arbitrarily oriented planar triangles and planar polygons. The 

main reason of focusing only these two arbitrary shapes was that most mesh 

generation software for finite element analysis and computer graphics discretize 

geometry into them. He ended up with deriving an expression for view factor between 

two arbitrarily oriented planar polygons, which obeying reciprocity rule of view 

factors. Another conclusion of this study was that the numerical quadrature is not 
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needed for evaluation of the special function in the analytical view factor 

expression.[8] 

Lei Yang and Wenzhen Chen (2014) thought that existing theoretical formulas 

for view factor between nuclear fuel bundles are not suitable for non-standard 

assembly geometries such as hexagonal or circular. For view factor calculations, they 

used discrete transfer model (DTRM) and discrete ordinates model (DO), which both 

are proposed on CFD method. They concluded that DTRM method can be used to 

calculate view factors accurately. [9]. 

Barry and Ying (2016) calculated numerically view factors between hot and 

cold side ceramic plates within a thermoelectric device with ray tracing method by 

utilizing hybrid CPU-GPU high performance computing. They tried different set of 

dimensions for plates and obtain very accurate results. [10] 

Mirhosseini and Saboonchi (2011) applied the MC method to calculate view 

factors for a plate including strip elements to circular. They investigated the 

performance of MC technique by changing number of strip elements and number of 

rays. They observed that the error decreased as the number of rays increased, which 

was expected for a statistical method.[11] 

 

2.3 FINITE ELEMENT MODELING (MOOSE) 

 Modeling physical problems is a powerful way for engineers and scientists to 

understand the nature of the problem. Computational models can bring light for special 

cases that are difficult measure experimentally. Especially in nuclear industry, because of 

safety and cost related concerns, computational studies take an important place. 
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 Every phenomenon in nature can be described by the laws of physics with terms 

of algebraic, differential, and/or integral equations, which is called analytical description 

of physical phenomenon or mathematical models.  The solution of mathematical models 

is sometimes not easy to solve and requires making reasonable assumptions or using 

numerical methods.  Rapid development in computer science makes it possible to solve 

many engineering problems numerically. [4] 

 The finite element method and its generalizations are the most powerful 

computer-oriented methods ever devised to analyze practical engineering problems. 

Today, finite element analysis has a significant place in many fields of engineering 

design and manufacturing. [4] 

 In finite element, first, the geometry of problem is divided into subdomains or 

finite elements. Then, for each element, governing equations that represent the physics of 

the problem are approximated by polynomials. Finally, the equations are solved, and an 

approximate solution is found on finite elements. 

 Multiphysics Object Oriented Simulation Environment (MOOSE) is a parallel 

computational framework has been under development since 2008 to provide solutions to 

systems of coupled, nonlinear partial differential equations (PDEs) which are important 

for nuclear processes. Differ from traditional data-flow oriented computational 

frameworks, MOOSE uses Jacobian-free Newton-Krylov (JFNK) scheme in order to 

reduce memory and time consumption. This scheme employs Krylov method for solving 

the linear system that result from the application of Newton’s method. Since the Krylov 

iterative methods require only matrix-vector product rather than full matrix product, the 

full Jacobian matrix is not needed. [5] 
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Starting with a discrete problem of length N, 

 𝐹(𝑥) = 0 (21) 

the Jacobian of the system is defined by the 𝑁 𝑥 𝑁 matrix 

 𝒥(𝑥) =
𝜕𝐹(𝑥)

𝜕𝑥
 (22) 

The Newton iteration can be expressed as 

 𝒥(𝑥𝑘)𝛿𝑥𝑘 = −𝐹(𝑥𝑘) (23) 

which leads to 

 𝑥𝑘+1 = 𝑥𝑘 + 𝜕𝑥𝑘 (24) 

By using Krylov solvers, the Jacobian matrix is reduced to a matrix-vector 

 𝒥(𝑥𝑘)𝛿𝑥𝑘 ≈
𝐹(𝑥𝑘 + 𝜖𝛿𝑥𝑘) − 𝐹(𝑥𝑘)

𝜖
 (25) 
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CHAPTER 3 

 

METHODOLOGY 

 

 
3.1 MONTE CARLO METHOD 

Like other MC applications, rays used in view factor calculations are sampled  

from an origin, and their behavior is tracked till they are disappeared. Rays are 

considered as having identical properties except direction. In this work, rays are 

considered as absorbed in the first surface they intersect. Figure 3.1 illustrates MC rays 

used to calculate view factor between parallel plates. 

 
Figure 3.1 Monte Carlo rays emitted from a source point 

 

3.2 MOOSE MESH STRUCTURE 

MOOSE has a built-in mesh generator for simple meshes such as lines, rectangles, 

and rectangular prisms(boxes). For complex geometries, it is suggested to use external 

mesh generation software and convert it to a format that  MOOSE can read.

Source Point 

Rays 
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Finite element mesh is formed by four main parts: blocks, elements, sides and 

nodes. In Figure 3.2, these fundamental parts are illustrated to make them easy to 

understand. The 3D cubic mesh in figure was generated by using Trelis.

 

Figure 3.2 Fundamental parts of a finite element mesh. 

 

For this mesh, there is only one mesh block, and 8-noded hexahedron (HEX8) is 

chosen as element type. The block has 1000 finite elements (10x10x10), each finite 

element has 6 sides, and each side has 4 nodes.  Number of sides and nodes might change 

according to element type such tetrahedron, pentahedron. 

In MOOSE mesh structure, blocks, block sides(boundaries) and elements have 

unique identification (ID) numbers. On the other hand, elements’ sides and nodes do not 

have any unique IDs because they vary on the element type. Instead, they are identified in 

counter-clockwise order, as described in Figure 3.3.  

Element Node Side Block 
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Figure 3.3 Side and node orientation for a hexahedron finite element. 

 

3.3 MOOSE USEROBJECT 

UserObject is a system in MOOSE framework that defines its own interface, 

which other MOOSE objects can call to retrieve data. It can provide results as scalar or 

vector value to other MOOSE objects. Users can easily add their own user objects to 

perform any kind of calculation. There are four types of UserObjects:  

• ElementUserObject: performs evaluations on each element; 

• NodalUserObject: performs evaluations on each node; 

• SideUserObject: performs evaluations on each side; and 

• GeneralUserObject: is a generic object that can do any calculation while 

providing a common interface for use by other MOOSE objects. 

UserObjects have a specific anatomy and must override following functions, 

• virtual void initialize(): it is called just ones before starting calculations. This 

is useful for resetting data structures and initializing one-time variables such 

as pseudo-random number seed. 

Side 5 

Side 0 

Side 4 

Side 1 

Side 2 

Side 3 

Node 0 Node 1 

Node 2 Node 3 
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• virtual void execute(): it is called once on each geometric object(element,node 

or side) or just one time per calculation for a GeneralUserObject. All 

calculations are done inside this function. 

• virtual void threadJoin(const UserObject &y): it is used during threaded 

execution to join together calculations generated on different threads. the “y” 

needs to be casted to a constant reference of type of UserObject itself, then the 

data from “y” needs to be extracted and added to the data in current(this) 

object.   

• virtual void finalize(): it is the very last function called after all calculations 

have been completed. The user must take all of the calculations performed in 

execute() and do some last operation to get final values. 

• In addition to these functions, to provide data or result to other MOOSE 

objects, an accessor function is defined, allowing for other MOOSE object can 

call this function and get the result of the calculations done by user object. 

The accessor function can be named as getValue(), averageValue(), etc… 

 

3.4 VIEW FACTOR MODEL 

Since it is extremely powerful and flexible, user object system is chosen to 

calculate view factors. The implemented user object model is named as “ViewFactor”. It 

is a derived class inheriting from a base class “ViewFactorBase”, which keeps all user 

defined variables and user defined functions. All geometrical calculations, linear algebra 

operations and MC sampling are done via user defined functions. It is safer and easier to 

understand the code when functions are used instead of writing the whole code in just one 
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complex script. All user defined functions used in this work, and the physics behind them 

are explained in details in this section. 

ViewFactorBase class contains the following functions, 

• getSideMap(elemPTR,sideID) 

• getNormal(sideMap) 

• getCenterPoint(sideMap) 

• getArea(point, sideMap) 

• getRandomDirection(normal, dimension) 

• isOnSurface(point, sideMap) 

• getRandomPoint(sideMap) 

• isIntersected(point, direction, sideMap) 

• isSidetoSide(sideMap, sideMap) 

• isVisible(sideMap, sideMap) 

• doMonteCarlo(sideMap, sideMap, sourceNumber, samplingNumber) 

 

3.4.1 VECTOR LENGTH 

 
 

Figure 3.4 Length of a vector 

 

Vector is an object that has a magnitude and direction in space, having valuable 

information for geometrical calculations. The magnitude (length) of a vector  𝑣Ԧ =

〈𝑥, 𝑦, 𝑧〉 shown in Figure 3.4, ‖𝑣Ԧ‖, can be calculated by following formula. 

𝑣Ԧ = 〈𝑥, 𝑦, 𝑧〉 
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 ‖𝑣Ԧ‖ = √𝑥2 + 𝑦2 + 𝑧2 (26) 

The function norm() in Point class is using this equation to calculate vector magnitude.  

 

 

3.4.2 ANGLE BETWEEN VECTORS 

The angle between two vectors can be calculated by using the cosine formula.  

 

 
Figure 3.5 Angle between vectors 

 

 𝑐𝑜𝑠𝜃 =
(𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ)

‖𝑣1ሬሬሬሬԦ‖‖𝑣2ሬሬሬሬԦ‖
 (27) 

where ‖𝑣1ሬሬሬሬԦ‖ and ‖𝑣2ሬሬሬሬԦ‖ are the lengths of vectors 𝑣1ሬሬሬሬԦ = 〈𝑥1, 𝑦1, 𝑧1〉 and 𝑣2ሬሬሬሬԦ = 〈𝑥2, 𝑦2, 𝑧2〉, 

respectively, and (𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ) is the dot product of the 𝑣1ሬሬሬሬԦ and 𝑣2ሬሬሬሬԦ vectors, defined as: 

 (𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ) = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 (28) 

Afterwards, the angle between vectors 𝑣1ሬሬሬሬԦ and 𝑣2ሬሬሬሬԦ can be calculated by using arccosine: 

 𝜃 = acos (
(𝑣1ሬሬሬሬԦ ⋅ 𝑣2ሬሬሬሬԦ)

‖𝑣1ሬሬሬሬԦ‖‖𝑣2ሬሬሬሬԦ‖
) = 𝑎𝑐𝑜𝑠 (

𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

√(𝑥1
2 + 𝑦1

2 + 𝑧1
2)(𝑥2

2 + 𝑦2
2 + 𝑧2

2)
) (29) 

 

 

const Point v; 

Real vector_length = v.norm() 

 

𝑣1ሬሬሬሬԦ 

𝑣2ሬሬሬሬԦ 
𝜃 

const Point v1; 

const Point v2; 

const Real theta = acos((v1*v2)/(v1.norm()*v2.norm())); 
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3.4.3 DISTANCE BETWEEN POINTS 

The distance between two points in space is calculated by using following 

formula; 

 
 

Figure 3.6 Distance between points 

 

 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (30) 

The distance between points is equal the magnitude of vector that is created by points.  

 

 

3.4.4 ELEMENT SIDE MAP FOR NODAL COORDINATES 

Map is one of the useful associative containers in C++ Standard Template 

Library (STL). It contains key/value pairs, where key serves as an index into the map, 

and the value serves as the associated data to be stored. The value can be any type in 

C++, so map of containers such as map of vectors or map of maps can be defined.  

In this work, to store nodal coordinates of element sides, map of vectors, which is 

compatible with any kind of element type, is used, and termed as “side_map”. In almost 

all functions, side_map is used as function argument. The key of side_map is an integer 

and represents node ID in element side. The value of side_map is a vector and represents 

the Cartesian (x,y,z) coordinates of the associated node. The size of side_map is equal to 

d 𝑝1(𝑥1, 𝑦1, 𝑧1)  
𝑝2(𝑥2, 𝑦2, 𝑧2)  

const Point v1; 

const Point v2; 

const Real d = (v2-v1).norm(); 
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the number of nodes on element side. Figure 3.7 illustrates what side_map represents for 

an element side. 

 
 

Figure 3.7 Side map representation 

 

MOOSE is an object-oriented framework written in C++, giving the opportunity 

to create individual objects for each element, side and node. Using pointers is the best 

way to access these objects to reduce memory usage. View factor calculations are related 

to element sides, and thus, side pointers are needed to retrieve nodal coordinates from 

element surfaces. The UserObject model, ViewFactor, is inheriting from SideUserObject 

class, which automatically loops over all elements in a specified boundary. For each 

iteration of the loop, pointers are created to current element object.  

Element object in MOOSE has a useful member function which creates a pointer 

to side of an element if associated side ID is passed to function as argument. Similarly, 

side object in MOOSE has a member function to create pointer to nodes of the side by 

passing node ID to function. Those node pointers can be used to access nodal 

coordinates. “side_map” is created by looping over nodes on a side and inserting their 

IDs and x,y,z coordinates to map container.  

𝑠𝑖𝑑𝑒_𝑚𝑎𝑝 =

ۏ
ێ
ێ
ۍ
0 〈𝑥0, 𝑦0, 𝑧0〉

1 〈𝑥1, 𝑦1, 𝑧1〉

2 〈𝑥2, 𝑦2, 𝑧2〉

3 〈𝑥3, 𝑦3, 𝑧3〉ے
ۑ
ۑ
ې

 

Node 0 Node 1 

Node 2 Node 3 
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The function getSideMap(elemPTR,sideID) in ViewFactorBase class is using 

element pointer and side ID and creates side_map as explanied.  

 

3.4.5 ELEMENT SIDE NORMAL 

Surface normal 𝑛ሬԦ, plays an important role in view factor calculations; it is  

always orthogonal to a surface, and hence it is perpendicular to any point or vector lie on 

the surface. For finite element mesh, normal is prone to change according to element 

side. 𝑛ሬԦ can be found by cross product of any given two vectors, defined by three arbitrary 

points on the surface.  

 
Figure 3.8 Surface normal 

 

For instance, in Figure 3.8,  𝑝1, 𝑝2, 𝑝3 are random points on surface S, vectors 𝑢 and 𝑣 are 

calculated by taking difference point coordinates.  

𝑛ሬԦ   

𝑣Ԧ   

 𝑢ሬԦ   

 𝑝1(𝑥1, 𝑦1, 𝑧1) 

𝑝2(𝑥2, 𝑦2, 𝑧2) 

𝑝3(𝑥3, 𝑦3, 𝑧3) 
𝑆 

const std::map<unsigned int, std::vector<Point>> 

ViewFactorBase::getSideMap(const Elem * elem,const unsigned int 

side) const 

{ 

  auto elem_side-elem->build_side_ptr(side); 

  std::map<unsigned int, std::vector<Point>> side_map;   

  unsigned int n_n = elem_side->n_nodes();        

  for (unsigned int i = 0; i < n_n; i++)          

  { 

    const Node * node = elem_side->node_ptr(i); 

    Point node_p((*node)(0), (*node)(1), (*node)(2)); 

    side_map[i].push_back(node_p); 

  } 

  return side_map; 

} 



 

23 

𝑢ሬԦ = 〈𝑢𝑥 , 𝑢𝑦, 𝑢𝑧〉 = 〈𝑝3 − 𝑝1〉 = 〈(𝑥3 − 𝑥1), (𝑦3 − 𝑦1), (𝑧3 − 𝑧1)〉 

𝑣Ԧ = 〈𝑣𝑥 , 𝑣𝑦, 𝑣𝑧〉 = 〈𝑝2 − 𝑝1〉 = 〈(𝑥2 − 𝑥1), (𝑦2 − 𝑦1), (𝑧2 − 𝑧1)〉 

Then surface normal is calculated as,  

 𝑛ሬԦ = 𝑢ሬԦ  × 𝑣Ԧ = 𝑑𝑒𝑡 |

𝑖 𝑗 𝑘
𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

|  

 𝑛ሬԦ = (𝑢𝑦𝑣𝑧 − 𝑢𝑧𝑣𝑦)𝑖 − (𝑢𝑥𝑣𝑧 − 𝑢𝑧𝑣𝑥)𝑗 + (𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥)𝑘 (31) 

  

The function getNormal(sideMap) in ViewFactorBase class is calculating surface 

normal in this way. It takes side_map as function argument, and uses first three nodes as 

random points in an element surface, and uses them to calculate the surface normal. After 

normalization, it returns surface normal as unit vector. 

 

3.4.6 CENTER POINT OF ELEMENT SIDE 

The geometric center point or centroid of a surface is useful for calculating area  

and sampling a random point on a surface. Centroid can be calculated by finding 

arithmetic mean position of all points surrounding polygon.  

const Point 

ViewFactorBase::getNormal(std::map<unsigned int, 

std::vector<Point>> map) const 

{ 

  Point p1 = map[0][0]; 

  Point p2 = map[1][0]; 

  Point p3 = map[2][0]; 

  Point v12(p2-p1); 

  Point v13(p3-p1); 

  Point n(v12.cross(v13)); 

  n /= n.norm(); 

  return n; 

} 
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Figure 3.9 Center point of element side 

 

For a 4 noded-element side in Figure 3.9, center point can be calculated as, 

 𝑐 = ((
∑ 𝑥𝑖

𝑛=3
𝑖=0

4
) , (

∑ 𝑦𝑖
𝑛=3
𝑖=0

4
) , (

∑ 𝑧𝑖
𝑛=3
𝑖=0

4
)) (32) 

The function getCenterPoint(sideMap) in ViewFactorBase class calculates the 

center point of element side when side_map is passed to function and returns as a vector.  

 

3.4.7 ELEMENT SIDE AREA CALCULATIONS 

Surface area is another important parameter for view factor calculations. One of  

the simplest approaches to calculate the area of any polygon is dividing the polygon to 

triangles, afterwards calculating their areas and finally summing the areas of triangles. In 

Node 0 Node 1 

Node 2 Node 3 

(𝑥0, 𝑦0, 𝑧0) (𝑥1, 𝑦1, 𝑧1) 

(𝑥2, 𝑦2, 𝑧2) (𝑥3, 𝑦3, 𝑧3) 

𝑐 

const Point 

ViewFactorBase::getCenterPoint(std::map<unsigned int, 

std::vector<Point> > map) const 

{ 

  unsigned int n=map.size(); 

  Point center(0,0,0); 

  for (size_t i = 0; i < n; i++) 

  { 

    center += map[i][0]; 

  } 

  center /= n; 

  return center; 

} 



 

25 

linear algebra, the area of a triangle can be calculated by finding half of the magnitude of 

the cross-product of two edges. 

 
 

Figure 3.10 Area of a triangle 

 

𝑢ሬԦ = 〈𝑢𝑥 , 𝑢𝑦, 𝑢𝑧〉 = 〈𝑝3 − 𝑝1〉 = 〈(𝑥3 − 𝑥1), (𝑦3 − 𝑦1), (𝑧3 − 𝑧1)〉 

𝑣Ԧ = 〈𝑣𝑥 , 𝑣𝑦, 𝑣𝑧〉 = 〈𝑝2 − 𝑝1〉 = 〈(𝑥2 − 𝑥1), (𝑦2 − 𝑦1), (𝑧2 − 𝑧1)〉 

 𝑆 =
|𝑢ሬԦ  ×  𝑣Ԧ|

2
=

|𝑢ሬԦ||𝑣Ԧ|𝑠𝑖𝑛𝜃

2
 (33) 

The vector lengths and the angle between vectors can be calculated by using 

functions getVectorLength() and getAngleBetweenVectors(), which are using equations 

(26) and (29).  

 The element side area can be calculated by dividing into triangles, following the 

previously discussed method. An arbitrary point is needed to create triangles by pairing it 

with nodes. The center point of an element side can be used to create triangles as shown 

in Figure 3.11. getCenterPoint() function will provide coordinates of center points when 

side_map is passed as an argument. 

𝑝1(𝑥1, 𝑦1, 𝑧1) 

𝑝2(𝑥2, 𝑦2, 𝑧2) 
𝑝3(𝑥3, 𝑦3, 𝑧3) 

𝑢ሬԦ   

 

𝑣Ԧ   

 

𝜃 
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Figure 3.11 Area of element side by using triangles 

 

The function getArea(point,sideMap) in ViewFactorBase class calculates total 

area of triangles created by a given point and side nodes. When the point and side_map is 

passed to function, it calculates and returns total area. 

 

3.4.8 SAMPLING RANDOM DIRECTION 

Direction sampling is one of the most important part of view factor calculations in  

this work, in which a direction is sampled randomly in spherical coordinates system. In 

spherical coordinate system, a direction vector is defined by length, 𝑟, polar angle, 𝜃, and 

Node 0 Node 1 

Node 2 Node 3 

𝑐 𝐴1 

𝐴2 

𝐴3 

𝐴4 

const Real 

ViewFactorBase::getArea(const Point &p, std::map<unsigned int, 

std::vector<Point>> map) const 

{ 

  unsigned int n = map.size();    

  Real area{0}; 

  for (size_t i = 0; i < n; i++)     

  { 

    const Point node1 = map[i][0]; 

    const Point node2 = map[(i+1)%n][0]; 

    const Point v1(node1-p); 

    const Point v2(node2-p); 

    const Real theta = acos((v1*v2)/(v1.norm()*v2.norm()));  

    area += 0.5 * v1.norm() * v2.norm() * sin(theta); 

  } 

  return area; 

} 
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azimuthal angle, 𝜙. The Figure 3.12 shows conversion of a unit direction vector from 

global spherical coordinate system to global cartesian coordinate system, 𝛺.  

 

 
Figure 3.12 Direction vector 

 

 

The polar angle changes from 0 to 𝜋, and the azimuthal angle from 0 to 2𝜋. 

Direction vector can be found once the angles have been specified in these intervals. 

However, the angles should be selected carefully to obtain a uniform direction 

distribution at a given radial position. In spherical coordinate system vectors moves away 

from each other in radial direction. Because of this, random numbers cannot be used 

directly to sample angles in their ranges. Instead, probability distribution functions(PDF) 

needs to be defined correctly and then cumulative distribution functions(CDF) needs to 

be determined and used to sample angles uniformly. 

𝑟 

𝑧 

𝑥 

𝑦 

𝛺ሬԦ 

𝛺ሬԦ𝑥 

𝛺ሬԦ𝑦 

𝛺ሬԦ𝑧 

𝜃 

𝜙 

𝛺 is unit direction vector,  

𝑟 = 1 

𝛺𝑥 = 𝑟 sin 𝜃 cos 𝜙 

𝛺𝑦 = 𝑟 sin 𝜃 sin 𝜙 

𝛺𝑧 = 𝑟 cos 𝜃 
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Figure 3.13 Solid angle representation on spherical coordinates 

 

The Figure 3.13 shows a uniformly distributed points on a sphere surface. The basic idea 

to obtain a uniform distribution is to consider the points to be photons or particles that are 

emitted from an isotropic source. In that case, each element of a solid angle should 

receive the same contribution from source, so the ratio of the unit element area to sphere 

surface area, which is equal for each of photon(particle), relates to the PDF. 

𝑃𝐷𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑑𝐴

𝐴
 

𝑃𝐷𝐹(𝜃, 𝜙)𝑑𝜃𝑑𝜙 =
𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙

4𝜋𝑟2
 

𝑃𝐷𝐹(𝜃)𝑑𝜃 .  𝑃𝐷𝐹(𝜙)𝑑𝜙 =
sin 𝜃 𝑑𝜃

2

𝑑𝜙

2𝜋
 

                  𝑃𝐷𝐹(𝜃)𝑑𝜃 =
sin 𝜃 𝑑𝜃

2
   →     ∫ 𝑃𝐷𝐹(𝜃)𝑑𝜃

𝜋

0

= ∫
sin 𝜃 𝑑𝜃

2
= 1

𝜋

0

 

 

(34a) 

 

 𝑃𝐷𝐹(𝜙)𝑑𝜙 =
𝑑𝜙

2𝜋
   →     ∫ 𝑃𝐷𝐹(𝜙)𝑑𝜙

𝜋

0

= ∫
𝑑𝜙

2𝜋
= 1

2𝜋

0

 (34b) 
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 𝐶𝐷𝐹(𝜃) = ∫ 𝑃𝐷𝐹(𝜃)𝑑𝜃
𝜃

0

= ∫
sin 𝜃 𝑑𝜃

2

𝜃

0

=
1 − cos 𝜃

2
 (35a) 

 𝐶𝐷𝐹(𝜙) = ∫ 𝑃𝐷𝐹(𝜙)𝑑𝜙
𝜙

0

= ∫
𝑑𝜙

2𝜋

𝜙

0

=
𝜙

2𝜋
 (35b) 

 

Cumulative distribution functions are uniformly distributed random numbers, and thus, 

the 𝜃 and 𝜙 distributions, shown in Figure 3. 14, now can be calculated indirectly by 

using random numbers. 

 𝜉1 = 𝐶𝐷𝐹(𝜃) =
1 − cos 𝜃

2
  →   𝜃 = acos(1 − 2𝜉1) (36a) 

 𝜉2 = 𝐶𝐷𝐹(𝜙) =
𝜙

2𝜋
  →  𝜙 = 2𝜋𝜉2       (36b) 

  
Figure 3.14 Polar Angle, 𝜃 and Azimuthal Angle, 𝜙 Distributions 

 

These distribution functions ensure directions are uniformly distributed and can be used 

in view factor calculations. In addition to uniform direction distribution, the coordinate 

system is important for sampling as well. Finite element mesh has different sides and 

they are not necessarily aligned with the global coordinate system, shown in Figure 3.15 

Instead, a local coordinate system can be used for direction sampling to make it 

compatible with any element side.  
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Figure 3.15 Surface normal orientation 

 

Local coordinate system is basically created by rotating global coordinate system 

till z-axis is aligned with the surface normal vector. The rotation angles are recorded for 

later use in rotation matrix. Direction vector is sampled in global coordinate system as 

previously described, and then by applying rotation matrix, it is transformed to local 

coordinate system. 

 

 
Figure 3.16 Unit normal vector in spherical coordinates 
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𝑧 

𝑥 
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𝑛ሬԦ 

𝑛ሬԦ 

 

𝑛ሬԦ 

 

𝑛 is unit normal vector,  

 

𝜃𝑛 = acos(𝑛𝑧) 

𝜙𝑛 = acos ቀ
𝑛𝑥

sin 𝜃𝑛
ቁ                for (𝑛𝑦>0) 

𝜙𝑛 = 2𝜋 − acos ቀ
𝑛𝑥

sin 𝜃𝑛
ቁ      for (𝑛𝑦<0) 

 

 

 

𝑛ሬԦ = 〈𝑛𝑥, 𝑛𝑦 , 𝑛𝑧〉 

𝑧 

𝑥 

𝑦 

𝜃𝑛 

𝜙𝑛 



 

31 

Rotation matrix is generated by using negative angles of unit normal vector. 

𝜃𝑙 = −𝜃𝑛 = −acos (𝑛𝑧) 

 

𝜙𝑙 = −𝜙𝑛 = − acos (
𝑛𝑥

sin 𝜃𝑛
) 

𝑅𝑧 = [
cos 𝜙𝑙 sin 𝜙𝑙 0

− sin 𝜙𝑙 cos 𝜙𝑙 0
0 0 1

]     ,   𝑅𝑦 = [
cos 𝜃𝑙 0 − sin 𝜃𝑙

0 1 0
sin 𝜃𝑙 0 cos 𝜃𝑙

] 

 

 𝑅𝑙𝑜𝑐𝑎𝑙 = 𝑅𝑧 ∗ 𝑅𝑦 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

] (37) 

 

In the final step, the unit direction vector(𝛺𝑔) is sampled in global coordinate system 

then transformed to local coordinate system (𝛺𝑙) by multiplying it with the rotation 

matrix. If 2D direction is requested, polar angle(𝜃) is assumed as 𝜋/2, making it parallel 

to the surface normal vector. 

𝛺𝑔 = [

𝛺𝑥

𝛺𝑦

𝛺𝑧

] = [
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

] 

 

 

𝑅𝑙𝑜𝑐𝑎𝑙 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

] 

 

𝛺𝑙 = 𝑅𝑙𝑜𝑐𝑎𝑙𝛺𝑔 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜙𝑙 − cos 𝜙𝑙 sin 𝜃𝑙

− cos 𝜃𝑙 sin 𝜙𝑙 cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜙𝑙

sin 𝜃𝑙 0 cos 𝜃𝑙

] [
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

] 

 

 𝛺𝑙 = [

cos 𝜃𝑙 cos 𝜙𝑙 sin 𝜃 cos 𝜙 + sin 𝜙𝑙 sin 𝜃 sin 𝜙 − cos 𝜙𝑙 sin 𝜃𝑙 cos 𝜃
− cos 𝜃𝑙 sin 𝜙𝑙 sin 𝜃 cos 𝜙 + cos 𝜙𝑙 sin 𝜃 sin 𝜙 + sin 𝜃𝑙 cos 𝜙𝑙 cos 𝜃

sin 𝜃𝑙 sin 𝜃 cos 𝜙 + cos 𝜃𝑙 cos 𝜃
] (38) 
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The function getRandomDirection(normal,dim) takes the unit normal vector and 

dimension as function arguments, and does all of the calculations explained above. It 

considers the dimension requested and returns unit direction vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

const Point 

ViewFactorBase::getRandomDirection(const Point & n,const int dim) 

const 

{ 

  Real theta_normal = acos(n(2)); 

  Real phi_normal{0}; 

  if (theta_normal!=0) 

    if (n(1)<0) 

      phi_normal = 2 * _PI-acos(n(0)/sin(theta_normal)); 

    else 

      phi_normal = acos(n(0)/sin(theta_normal)); 

  const Real theta_local = -theta_normal; 

  const Real phi_local = -phi_normal; 

  Real 

Rlocal[3][3]={{(cos(theta_local)*cos(phi_local)),sin(phi_local),(-

cos(phi_local)*sin(theta_local))},{(-

cos(theta_local)*sin(phi_local)),cos(phi_local),(sin(theta_local)*

sin(phi_local))},{sin(theta_local),0,cos(theta_local)}}; 

  Real theta{0},phi{0}; 

  const Real rand_phi = std::rand() / (1. * RAND_MAX); 

  const Real rand_theta = std::rand() / (1. * RAND_MAX); 

  switch (dim)    

    case 2: 

      theta = _PI/2; 

      phi = 2 * _PI * rand_phi; 

      break; 

    case 3: 

      theta = 0.5 * acos(1 - 2 * rand_theta); 

      phi = 2 * _PI * rand_phi; 

      break; 

  const Point 

dir_global(sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)); 

  const Point 

dir_local((Rlocal[0][0]*dir_global(0)+Rlocal[0][1]*dir_global(1)+R

local[0][2]*dir_global(2)), 

                        

(Rlocal[1][0]*dir_global(0)+Rlocal[1][1]*dir_global(1)+Rlocal[1][2

]*dir_global(2)), 

                        

(Rlocal[2][0]*dir_global(0)+Rlocal[2][1]*dir_global(1)+Rlocal[2][2

]*dir_global(2))); 

  return dir_local; 

} 
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3.4.9 TESTING POINT ON ELEMENT SIDE 

Positions of intersection point and source point of MC rays are the most important 

information to calculate view factor between surfaces. Since random numbers are used in 

MC sampling, intersection point or source point might be in any coordinate. To decide 

whether a ray will be counted or not it is necessary to know their exact coordinates to 

understand if the point is inside or outside the element side. To test a point on element 

side, area can be used as the criterion. Unlike using center point to calculate the area of 

an element side, discussed previously in function getArea(), an arbitrary point lying on 

the same plane with element side is used in area calculations. If the point is inside, then 

the total area of triangles will give the area of element side. On the other hand, if it is 

outside then the total area will be greater than the actual area of element side. Therefore, 

the total area can be used as a criterion/parameter to check whether a point lies on the 

element side or not.  

In Figure 3.17, for a 4-noded element side with a point, 𝑝, is shown. First, four 

vectors from the nodes to the point are created. Afterwards, areas of triangles, 𝐴1, 𝐴2,

𝐴3, 𝐴4, are calculated by using two neighbor vectors, forming the sides of triangle, in 

equation (33). For the case shown in Figure 3.17, the total area is expected to be equal to 

the actual area of the element side, meaning the point is inside. 

In Figure 3.18, for the same element side, a different point is defined. Areas are 

calculated in as previously discussed; however, in this case the total area is greater than 

the side area, which means the point is outside. 
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Figure 3.17 An arbitrary point on element side 

 

 

Figure 3.18 An arbitrary point out of element side 

 

The function isOnSurface(point,sideMap) uses the discussed logic. It takes point 

and side_map as function arguments and tests if the point is on the element side. The 

function return type is boolean, e.g. if the point is on the side, it returns “true”, otherwise 

returns “false”. This function comes in useful for testing source and intersection points.  

 

Node 0 
Node 1 

Node 2 Node 3 

𝑝 
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𝐴4 
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𝑝 𝐴1 

𝐴2 

𝐴3 

𝐴4 

const bool 

ViewFactorBase::isOnSurface(const Point &p, std::map<unsigned int, 

std::vector<Point>> map) const 

{ 

  const Point center{getCenterPoint(map)}; 

  Real elem_area = getArea(center,map); 

  Real area = getArea(p,map); 

  if ((area-elem_area)<_error_tol) 

    return true; 

  else 

    return false; 

} 
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3.4.10 SAMPLING RANDOM POINT ON ELEMENT SIDE 

Besides sampling direction, multiple origins or source points are required to  

calculate view factors more accurately. Rays which are used in view factor calculations 

(see Figure 3.1), are emitted from 2D element sides, therefore random source points are 

sampled on the same side. One simple way to select a random origin point on a surface is 

drawing a circle around the geometric center of the side with radius that is large enough 

to expand to edges of the element side, shown in Figure 3.19, and then sampling a point 

inside the circle by randomly chosen radial position and angle.  

The center point of element side and the radius of the circle can be easily 

calculated by equations (32) (30). The angular position of random point is similar to 

sampling direction in 3D. Since this random point lies on an element side, which is in x-y 

plane, the polar angle (𝜃) is assumed as constant angle of  𝜋/2 . By making a small 

modification for azimuthal angle (𝜙), getRandomDirection() function can be used to find 

direction in 2D as well.  

 

 

Figure 3.19 Uniform distribution on a circle surrounding the element side 

𝜙𝑖 = 2𝜋𝜉1 

𝑟𝑖 = 𝑅 ∗ √𝜉2 

𝑥𝑖 = 𝑥0 + 𝑟𝑖 ∗ cos(𝜙𝑖) 

𝑦𝑖 = 𝑦0 + 𝑟𝑖 ∗ sin(𝜙𝑖) 

 

𝜙1 𝜙2
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𝑝2 
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y 
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𝑟1 

(𝑥0, 𝑦0) 



 

36 

The 𝜙 has uniform distribution, and it can be sampled over 2𝜋 by using pseudo-

random numbers. The radial position of random point needs to be sampled over circle 

radius, R. To make radial position distribution uniform, sampling needs to be done 

according to inverse square law which states that a physical quantity or intensity is 

inversely proportional to the square of the distance from its source in space. This is 

similar to using cosine distribution for 𝜃 in 3D direction sampling to get a uniform 

distribution. Once the radial and angular position of point is found, they are converted to 

global cartesian coordinate system to be used in calculations.  

As mentioned before, the random points are chosen to be in a circle that surrounds 

the element side. However, since the element side is not circular, it is possible that some 

points will be outside the element side. For example, in Figure 3.19, point 𝑝2 is not on the 

element side and thus it is rejected as an origin point. This method is termed rejection 

method, in which first of all, points are chosen randomly, and then tested whether they 

are inside the domain of interest.  

 

const Point 

ViewFactorBase::getRandomPoint(std::map<unsigned int, 

std::vector<Point>> map) const 

{ 

  const Point n = getNormal(map); 

  const Point center{getCenterPoint(map)}; 

  Real rad{0},d{0};  //radius, distance 

  for (size_t i = 0; i < map.size(); i++)    

    Point p = map[i][0]; 

    d = (p-center).norm(); 

    if (d>rad) 

      rad=d; 

  while (true) 

    const Real rand_r = std::rand() / (1. * RAND_MAX); 

    const Real r =rad * std::sqrt(rand_r); 

    const Point dir(getRandomDirection(n,2)); 

    const Point p(center + r*dir); 

    if (isOnSurface(p,map)) 

      return p; 

} 
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The function getRandomPoint(sideMap) takes side_map as argument, creates a 

circle and samples a random point on it. After testing the point is on the element side by 

utilizing isOnSurface() function, it accepts the point as origin if it is on element side, and 

rejects one that is not. 

3.4.11 TESTING ORIENTATION OF ELEMENT SIDES 

Monte Carlo technique is one of the most computationally expensive numerical  

methods, and finding a way to speed up the calculations and decrease their memory usage 

is always favored. This can be done by avoiding unnecessary calculations and making 

reasonable assumptions. Therefore, to make view factor calculations more time and 

memory efficient, the orientation between surfaces are checked, and only relevant 

surfaces are selected.  

The basic idea of surface picking is checking if two different surfaces facing each 

other, and they are eliminated if they cannot view each other. In case they face each 

other, MC simulations are initiated. This is done for all surface pairs in a geometry, using 

the surface normal as a main reference to check the orientation of surfaces. 

 
Figure 3.20 Surface orientation 
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Geometrically, surfaces are said to be turned towards each other if and only if the 

angles between surfaces’ normal and the line connecting the centers of the surfaces are 

smaller than 𝜋/2. In Figure 3.20, only the surfaces 𝑆 and 𝑆2 are facing each other because 

both angles 𝜃2 and 𝜙2 are smaller than 𝜋/2. These angles can be called as orientation 

angles. 

The function isSidetoSide(sideMap,sideMap) is written to check surface 

orientation by using the previously defined angle criteria. It takes side_map for each 

surface as function arguments, calculates orientation angles and tests if they uphold 𝜋/2 

criteria.

 

const bool 

ViewFactorBase::isSidetoSide(const std::map<unsigned int, 

std::vector<Point>> & master_side_map, 

                             const std::map<unsigned int, 

std::vector<Point>> & slave_side_map) const 

{ 

  std::map<unsigned int, std::vector<Point>> master_map = 

master_side_map; 

  std::map<unsigned int, std::vector<Point>> slave_map = 

slave_side_map; 

  const Point master_normal = getNormal(master_side_map); 

  const Point slave_normal = getNormal(slave_side_map); 

  for (size_t i = 0; i < master_side_map.size(); i++) 

  { 

    const Point master_node = master_map[i][0]; 

    for (size_t j = 0; j < slave_side_map.size(); j++) 

    { 

      const Point slave_node = slave_map[j][0]; 

      const Point master_slave = (slave_node - master_node); 

      const Point slave_master = (master_node - slave_node); 

      const Real theta_master_slave = 

acos((master_normal*master_slave)/(master_normal.norm()*master_sla

ve.norm())); //Radian 

      const Real theta_slave_master = 

acos((slave_normal*slave_master)/(slave_normal.norm()*slave_master

.norm()));  //Radian 

      if (theta_slave_master<_PI/2 && theta_master_slave<_PI/2) 

        return true; 

    } 

  } 

  return false; 

} 
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3.4.12 TESTING INTERSECTION OF ELEMENT SIDES 

As discussed previously, it is considered that the rays used in calculations are  

emitted from the random source points on the sides, traveling along a line until they 

intersect another element side. The intersection point is a point that satisfies both line 

equation which ray follows and plane equation on which target element side lie. Since the 

direction vector is known, the line equation can be found. Furthermore, element side is 

basically a small area on a 2D infinite plane whose equation can be found by normal 

vector and any point given in plane. Solving the line equation and plane equation together 

gives the coordinates of the point at which a ray intersects the 2D plane on which element 

side is located. However, it might happen that the intersection point is not located in the 

element side. Once the intersection point is found, it should be tested whether it lies on 

element surface or not, which is done by isOnSurface() function. 

 
Figure 3.21 An arbitrary plane 

In Figure 3.21, a plane with normal 𝑛ሬԦ〈𝑛𝑥 , 𝑛𝑦, 𝑛𝑧〉 and a point 𝑝1(𝑥1, 𝑦1, 𝑧1) are shown.  

 

The equation represents this plane is, 

 

𝑛𝑥(𝑥 − 𝑥1) + 𝑛𝑦(𝑦 − 𝑦1) + 𝑛𝑧(𝑧 − 𝑧1) = 0 

 

The unit direction vector ΩሬሬԦ = 〈Ω𝑥 , Ω𝑦, Ω𝑧〉 shown in Figure 3.22 represents the ray’s 

direction, and thus, using this vector and origin point, any point in ray’s direction can be 

found. 

𝑛ሬԦ〈𝑛𝑥, 𝑛𝑦 , 𝑛𝑧〉   

𝑝1(𝑥1, 𝑦1, 𝑧1) 𝑃𝑙𝑎𝑛𝑒 
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Figure 3.22 Intersection point in spherical coordinates 

 

Figure 3.23 shows a random ray emitted from one plane to another. If there is a point that 

satisfies both the ray’s and other plane’s equation, then the ray will intersect the plane at 

that point, 𝑝. The only information known about point, 𝑝 is the plane equation. If the 

distance, 𝑑, from the origin point was calculated, then the coordinates of intersection 

point can be found. 𝑑 can be calculated by substituting coordinates of 𝑝 into plane 

equation in terms of 𝑑 and Ω. 

 
Figure 3.23 Representation of source and intersection point 
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Plane equation, 

𝑛𝑥(𝑥 − 𝑥1) + 𝑛𝑦(𝑦 − 𝑦1) + 𝑛𝑧(𝑧 − 𝑧1) = 0 

Line equations, 

𝑥 = 𝑥0 + Ωx𝑑              𝑦 = 𝑦0 + Ωy𝑑                𝑧 = 𝑧0 + Ωz𝑑 

Substitute line equations into plane equations, 

𝑛𝑥(𝑥0 + Ωx𝑑 − 𝑥1) + 𝑛𝑦(𝑦0 + Ωy𝑑 − 𝑦1) + 𝑛𝑧(𝑧0 + Ωz𝑑 − 𝑧1) = 0 

Solve for 𝑑, 

 𝑑 =
𝑛𝑥(𝑥1 − 𝑥0) + 𝑛𝑦(𝑦1 − 𝑦0) + 𝑛𝑧(𝑧1 − 𝑧0)

𝑛𝑥Ω𝑥 + 𝑛𝑦Ω𝑦 + 𝑛𝑧Ω𝑧
 (39) 

Then, the coordinates of intersection point are calculated, 𝑝(𝑥, 𝑦, 𝑧)  

 

𝑥 = 𝑥0 + Ωx𝑑 

𝑦 = 𝑦0 + Ωy𝑑 

𝑧 = 𝑧0 + Ωz𝑑 

(40) 

Finding the intersection point is not enough because the element side is just a region in 

the plane. For the intersection point to be used in view factor calculations, it must be on 

the element side. For example, a point like the one shown in Figure 3.24 is not 

considered. The function isOnSurface() is used to check if a point is on the element side. 

 
Figure 3.24 Testing intersection point on target surface 

𝑝(𝑥, 𝑦, 𝑧) 

𝑃𝑙𝑎𝑛𝑒 

Element Side 



 

42 

The function isIntersected(point,direction,sideMap) is used to test if rays are 

intersected with element sides. It takes the source point, ray’s direction, and side map of 

element side wanted to be checked. The isIntersected() is a Boolean function, meaning If 

a ray intersect element side, it returns true. Otherwise, it returns false. 

 

3.4.13 TESTING VISIBILITY OF ELEMENT SIDES 

Because obstacles can influence the view factors, another important thing that  

needs to be checked is blocking surfaces. As mentioned before, the rays are considered 

active until they reach a surface. View factors are affected by intermediate surfaces 

between the source point and target surface because they will prevent radiating sides 

from viewing each other. The distance to target boundary 𝑑𝑡𝑎𝑟𝑔𝑒𝑡, shown in Figure 3.25, 

can be calculated since target boundary is predefined in input file.  

Visibility testing requires all element sides in a geometry to be checked. The 

algorithm calculates the distances to all elements that might be struck by rays. If a shorter 

distance than the one to target is detected, it is understood that there is a blocking surface. 

Then the ray is removed from view factor calculations. 

 

const bool 

ViewFactorBase::isIntersected(const Point & p1, 

                              const Point & dir, 

 std::map<unsigned int, 

 std::vector<Point>> map) const 

{ 

  const Point n = getNormal(map); 

  const Point pR = getRandomPoint(map); 

  Real d = (n*(pR-p1))/(n*dir); 

  const Point p2(p1 + d*dir); 

  if (isOnSurface(p2,map)) 

    return true; 

  else 

    return false; 

} 



 

43 

 

Figure 3.25 Testing visibility of target surface 

 

The function, isVisible(sideMap,sideMap), is used to test if there is a blocking 

surface between the origin and target element side. It loops over all element sides in mesh 

and finds potential target elements that are within along path of ray. The distance from 

ray’s origin to potential target element side is needed to understand whether it is blocking 

the actual target element by comparing it with 𝑑𝑡𝑎𝑟𝑔𝑒𝑡. 

𝑑 

𝑑𝑡𝑎𝑟𝑔𝑒𝑡 

const bool 

ViewFactorBase::isVisible(const std::map<unsigned int, 

std::vector<Point>> & master_side_map,const std::map<unsigned int, 

std::vector<Point>> & slave_side_map) const 

{ 

  if (isSidetoSide(master_side_map, slave_side_map) == false) 

    return false; 

  const Point master_center = getCenterPoint(master_side_map); 

  const Point slave_center = getCenterPoint(slave_side_map); 

  Real d1 = (master_center - slave_center).norm(); 

  Point dir = (slave_center - master_center)/d1; 

  Real d2{0}; 

   

  for (const auto & t : _mesh.buildSideList()) 

  { 

    auto elem_id = std::get<0>(t); 

    auto side_id = std::get<1>(t); 

    auto bnd_id = std::get<2>(t); 

    Elem * el = _mesh.elemPtr(elem_id); 

    std::unique_ptr<const Elem> el_side = el-

>build_side_ptr(side_id); 

    std::map<unsigned int, std::vector<Point>> side_map; 

    unsigned int n_n = el_side->n_nodes(); 
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3.4.14 MONTE CARLO CALCULATIONS 

The functions described so far perform calculations related to geometry, while  

providing the basis for MC simulation. View factor calculations done using Monte Carlo 

simulation relies on tracking rays and counting how many of them strike the desired 

element sides.  

 The number of rays and number of source points are input parameters for Monte 

Carlo simulations. UserObject model gives the user a chance to define both in the input 

file. In model, a separate member function, which is doMonteCarlo(), is defined in 

ViewFactorBase class for Monte Carlo calculations. The function takes number of rays, 

number of source points and side maps of source and target element sides as function 

argument. It calculates surface normal for both sides by getNormal(), samples random 

source point location by getRandomPoint(), samples random direction by 

getRandomDirection(). At the end, it calculates view factor as a ratio of total intersected 

rays to total number of rays and returns it. Figure 3.26 is flow chart for doMonteCarlo() 

function, and the one in Figure 3.27 is the flow chart for ViewFactor model. 

    for (unsigned int i = 0; i < n_n; i++) 

    { 

      const Node * node = el_side->node_ptr(i); 

      Point node_p((*node)(0), (*node)(1), (*node)(2)); 

      side_map[i].push_back(node_p); 

    } 

    const Point side_center = getCenterPoint(side_map); 

    d2 = (master_center - side_center).norm(); 

    if (isSidetoSide(master_side_map, side_map) && 

isIntersected(master_center, dir, side_map) && 

        d2 < d1) 

    { 

      return false; 

    } 

  } 

  return true; 

} 
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const Real 

ViewFactorBase::doMonteCarlo(std::map<unsigned int, 

std::vector<Point>> master_side_map, 

                             std::map<unsigned int, 

std::vector<Point>> slave_side_map, 

                             unsigned int _sourceNumber, 

                             unsigned int _samplingNumber) 

{ 

  const Point master_elem_normal = getNormal(master_side_map); 

  unsigned int counter{0}; 

  Real viewfactor_per_elem{0}; 

  Real viewfactor_per_src{0}; 

  for (size_t src = 0; src < _sourceNumber; src++) 

  { 

    viewfactor_per_src = 0; 

    const Point source_point = getRandomPoint(master_side_map); 

    counter = 0; 

    for (size_t ray = 0; ray < _samplingNumber; ray++) 

    { 

      const Point direction = 

getRandomDirection(master_elem_normal); 

      const Real theta = 

acos((direction*master_elem_normal)/(direction.norm()*master_elem_

normal.norm())); // Radian 

      if (theta < _PI/2) 

      { 

        if (isIntersected(source_point, direction, 

slave_side_map)) // check Intersecting 

        { 

          counter++; 

        } 

      } 

    } 

    viewfactor_per_src = (counter * 1.0) / _samplingNumber; 

    viewfactor_per_elem += viewfactor_per_src; 

  } 

  viewfactor_per_elem *= (1.0/_sourceNumber); 

  return viewfactor_per_elem; 

} 
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Figure 3.26 Flow chart for Monte Carlo calculations  
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Figure 3.27 Flow chart for ViewFactor model 

 

 

 

Yes 

Yes No 

No 

No 

Store View 

Factors  

i > NE 

j > ME 

Is ej visible 

for ei ? 

Do Monte Carlo Calculations 

Element j (ej) 

View Factor 

Model 

Number of Elements in boundary m (ME) 

Number of Elements in boundary n (NE) 

 

Element i (ei) 

Yes 

j = j + 1 

i = i + 1 



 

48 

3.5 RADIATIVE HEAT TRANSFER MODEL 

 View factor calculations is only the first part of implementing this new radiative 

heat transfer model. When view factors between surfaces are known, then equation (9) 

can be solved. In MOOSE Mesh structure, block sides represent boundaries, and 

boundary conditions should be assigned to them. For radiative heat transfer calculations, 

a new boundary condition model “RadiativeHeatFluxBC” is added to MOOSE. It takes 

view factors from “ViewFactor” user object, calculates black body radiative heat flux and 

applies it as boundary condition for heat transfer calculations. 

 

 

Figure 3.28 Radiative heat exchange between elements 

 Figure 3.28 shows outgoing fluxes from elements i and j. The net flux is 

calculated by subtracting all incoming fluxes from the outgoing fluxes, which is the basis 

of the new boundary condition model “RadiativeHeatFluxBC”. The model loops over all 

elements in specified boundaries and calculates net heat flux for each element by pairing 

with all other elements, which is performed using following equation. The flow chart for 

radiative heat transfer model is shown in Figure 3.29. 

 𝑞𝑖,𝑛𝑒𝑡 = 𝑞𝑖𝑗 − ∑ 𝐹𝑖𝑗𝑞𝑗𝑖

𝑛

𝑗
= ∑ 𝐹𝑖𝑗(𝑞𝑖𝑗 − 𝑞𝑗𝑖)

𝑛

𝑗
 (41) 

𝑞𝑖𝑗 
𝑞𝑗𝑖 

Element i 
Element j 
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Figure 3.29 Flow chart for RadiativeHeatFluxBC model 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

 The implemented view factor model is tested by using simple geometries. The 

finite element meshes are generated by using Trelis software. Different geometric 

parameters such as height, width, radius and the distance between surfaces, are used to 

generate geometries. Analytical view factor values (Fanalytical) are calculated by using the 

formulas presented in Appendix D in textbook written by Modest [1]. The percentage 

error is calculated by following equation, 

 

 %𝐸𝑟𝑟𝑜𝑟 = 100 ∗
|𝐹𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|

𝐹𝑎𝑛𝑎𝑙𝑎𝑦𝑡𝑖𝑐𝑎𝑙
 (42) 

 

Since the view factors are calculated between the finite element surfaces, which are 

flat, not curved, the results obtained for flat geometries such as rectangles, disks, provide 

more insight about accuracy of ViewFactor model.  

 

The radiative heat transfer model is tested by a case study which is pellet heating 

experiment. The current GapHeatTransfer model in MOOSE is used for comparison of 

results. 
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4.1 PARALLEL RECTANGLES 

The rectangle surfaces illustrated in Figure 4.1 have h×w dimensions (h-height  

and w-width), separated from each other by distance, 𝑑, using hexahedral (HEX8) 

elements in the mesh. The results of calculations are presented by following table and 

figures. 

 

Figure 4.1 Geometry of parallel rectangles 

Table 4.1 View Factors for h=2, w=2, d=2 
 View Factors (Fcalculated) for different number of sampling (N) 

Run 102 103 104 105 106 107 

1 0.197500 0.198000 0.201075 0.199333 0.199678 0.199804 

2 0.217500 0.187750 0.199625 0.200857 0.199034 0.199732 

3 0.187500 0.201000 0.198500 0.198215 0.199734 0.199555 

4 0.237500 0.190750 0.203650 0.198610 0.199910 0.199659 

5 0.180000 0.199000 0.201100 0.199988 0.199708 0.199707 

6 0.220000 0.196500 0.197725 0.198130 0.199606 0.199692 

7 0.190000 0.207500 0.203075 0.200073 0.199661 0.199714 

8 0.172500 0.203000 0.198375 0.199153 0.199683 0.199688 

9 0.195000 0.199750 0.202125 0.199705 0.199738 0.199716 

10 0.212500 0.198250 0.201750 0.200163 0.199603 0.199809 

11 0.222500 0.198000 0.199550 0.201615 0.199968 0.199779 

12 0.215000 0.198500 0.198900 0.200490 0.200102 0.199753 

Mean F 0.203958 0.198167 0.200454 0.199694 0.199702 0.199717 

Std Dev 0.019669 0.005118 0.001951 0.001060 0.000260 0.000069 

Std Error 0.005678 0.001478 0.000563 0.000306 0.000075 0.000020 

Fanalytical 0.199825 0.199825 0.199825 0.199825 0.199825 0.199825 

%Error 2.068530 0.829841 0.314911 0.065338 0.061460 0.053828 

d 
w 

h 
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Figure 4.2 View factor for parallel plates for different sampling number 

 

 
Figure 4.3 Change of average view factor with sampling number 
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converged. Also, the absolute percent error drops below 0.1%, and thus, sampling 

number of N=105 can be used for similar geometries. 

 

 
Figure 4.4 Change of percentage error with sampling number 
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calculated view factors are presented for square plates with different d/h ratios for N=105 

rays. The error increases as d/h ratio is getting larger because as rays are spreading in 

radial direction, following Inverse Square Law (See section 3.4.10). Their probability of 
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Table 4.2 View Factors for different plate dimensions 
 d/h 

Run 0.5 1.0 2.0 4.0 8.0 16.0 

1 0.416150 0.201075 0.067850 0.019475 0.005200 0.001525 

2 0.409650 0.199625 0.068925 0.018975 0.004325 0.001175 

3 0.413450 0.198500 0.069450 0.019500 0.005425 0.001425 

4 0.414050 0.203650 0.068350 0.019900 0.004975 0.001475 

5 0.414850 0.201100 0.069100 0.019300 0.005150 0.001550 

6 0.417500 0.197725 0.068300 0.019150 0.005275 0.001275 

7 0.412200 0.203075 0.066475 0.018975 0.005050 0.001375 

8 0.414850 0.198375 0.070075 0.019300 0.005000 0.001300 

9 0.409450 0.202125 0.067725 0.019075 0.005300 0.001150 

10 0.412200 0.201750 0.068175 0.019425 0.004425 0.001225 

11 0.414850 0.199550 0.068600 0.019375 0.005125 0.001475 

12 0.411575 0.198900 0.068075 0.018750 0.005025 0.001125 

Mean F 0.413398 0.200454 0.068425 0.019267 0.005023 0.001340 

Std Dev 0.002468 0.001951 0.000921 0.000305 0.000331 0.000151 

Std Error 0.000712 0.000563 0.000266 0.000088 0.000096 0.000044 

Fanalytical 0.415253 0.199825 0.068590 0.019107 0.004922 0.001240 

%Error 0.446804 0.314911 0.239962 0.835866 2.040751 8.016045 
 

 

 

 
Figure 4.5 Change of average view factor with rectangle dimensions 
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Figure 4.6 Change of percentage error with rectangle dimensions 

 

4.2 PERPENDICULAR RECTANGLES 

In the case of perpendicular rectangles, one has a height h, while the other has  

width w, both sharing a common edge with size d (see Figure 4.7), i.e., the rectangles 

have h×d and w×d dimensions. 

 
 

Figure 4.7 Geometry of perpendicular rectangles 
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Table 4.3 View Factors for h=3, w=3, d=4 
 View Factors (F) for different number of sampling (N) 

Run 102 103 104 105 106 

1 0.220000 0.221417 0.221892 0.222799 0.222488 

2 0.253333 0.223083 0.219300 0.223012 0.219740 

3 0.254167 0.228417 0.227242 0.220751 0.224597 

4 0.246667 0.227583 0.215125 0.222885 0.225348 

5 0.224167 0.234167 0.222967 0.219128 0.222387 

6 0.247500 0.233833 0.224033 0.221029 0.219920 

7 0.269167 0.219417 0.220642 0.221340 0.223036 

8 0.270000 0.227167 0.218150 0.219530 0.222333 

9 0.230000 0.211250 0.222925 0.223183 0.220520 

10 0.223333 0.226833 0.220450 0.222948 0.217597 

11 0.266667 0.216167 0.225700 0.223361 0.225435 

12 0.245000 0.213333 0.223050 0.223543 0.220199 

Mean F 0.245833 0.223556 0.221790 0.221959 0.221967 

Std Dev 0.018056 0.007473 0.003321 0.001545 0.002441 

Std Error 0.005212 0.002157 0.000959 0.000446 0.000705 

Fanalytical 0.2187 0.2187 0.2187 0.2187 0.2187 

%Error 12.406683 2.220203 1.412742 1.490207 1.493675 

 

 

 
 

Figure 4.8 Change of average view factor with sampling number 
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Figure 4.8 shows the average view factor as a function of the number of rays, 

where the error bars represent their standard deviations. It is noticeable that the average 

view factor values fluctuate less compared to view factor values of the parallel rectangles. 

The percent error has the same profile. The reasonable sampling rate for this case is 104, 

because the view factor average values and their standard deviations, as well as the error 

are converged at this value. 

 

 
Figure 4.9 Change of percentage error with sampling number 
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Table 4.4 View Factors for different rectangle dimensions 
 h/w 

Run 1.0 1.5 2.0 2.5 3.0 3.5 

1 0.221892 0.247080 0.259383 0.268727 0.275050 0.274044 

2 0.219300 0.243660 0.260983 0.270260 0.267558 0.276206 

3 0.227242 0.247080 0.258275 0.270291 0.269942 0.273187 

4 0.215125 0.247080 0.262108 0.260344 0.271200 0.273187 

5 0.222967 0.250358 0.262225 0.267273 0.275717 0.269248 

6 0.224033 0.243667 0.259800 0.267922 0.266842 0.270155 

7 0.220642 0.245670 0.262367 0.266995 0.272658 0.274875 

8 0.218150 0.244012 0.258433 0.266995 0.270058 0.276685 

9 0.222925 0.244012 0.254233 0.270313 0.272642 0.276999 

10 0.220450 0.248107 0.259908 0.270260 0.268792 0.272384 

11 0.225700 0.248107 0.254850 0.263211 0.271467 0.277737 

12 0.223050 0.242250 0.261442 0.268322 0.265950 0.271606 

Mean F 0.221790 0.245924 0.259501 0.267576 0.270656 0.273859 

Std Dev 0.003321 0.002418 0.002708 0.003066 0.003082 0.002740 

Std Error 0.000959 0.000698 0.000782 0.000885 0.000890 0.000791 

Fanalytical 0.2187 0.246 0.2592 0.2664 0.2707 0.2734 

%Error 1.412742 0.031064 0.115966 0.441473 0.016131 0.168038 

 

 

 
 

Figure 4.10 Change of average view factor with different rectangle dimensions 
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4.3 COAXIAL DISKS 

Unlike the previous geometries, a circular geometry with tetrahedral (TET4) 

elements are used in view factor calculations.  

 
Figure 4.11 Geometry of coaxial disks 

Coaxial disk geometries with radii r1 and r2, on a distance, d, are considered (see Figure 

4.11), and the influence of the radii and distance on the view factor is investigated. N=104
 

rays are used in calculations.  

Table 4.5 View factors for r1=2, r2=2, d=2 
 Runs 

F12 
0.371386 0.371386 0.371386 0.371386 0.371386 0.371386 

0.370245 0.370245 0.370245 0.370245 0.370245 0.370245 

Mean F 0.37128125 

Std Dev 0.00058474 

Std Error 0.00016880 

Fanalytical 0.38196601 

%Error 2.79730681 

 

Table 4.6 View factors for different separation distance 

 
 

d/r 

1.0 2.0 3.0 4.0 5.0 6.0 

F12 0.373800 0.164323 0.088396 0.053096 0.036141 0.024605 

Fanalytical 0.381966 0.171573 0.091673 0.055728 0.037088 0.026334 

%Error 2.137890 4.225537 3.575299 4.723991 2.553609 6.567694 

 

d 

r1 

r2 



 

60 

 
 

Figure 4.12 Change of average view factor with distance to radius ratio 

Table 4.7 View factors for different disk dimensions 

 
r1/r2 

1.0 2.0 3.0 4.0 5.0 6.0 

F12 0.167250 0.108821 0.070338 0.045622 0.030225 0.022339 

Fanalytical 0.171573 0.117218 0.075049 0.049485 0.034315 0.024936 

%Error 2.519565 7.163402 6.278143 7.806354 11.91935 10.41428 

 

 
Figure 4.13 Change of average view factor with disk radius 
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4.4 COAXIAL CYLINDERS 

Radiation surfaces are not necessarily always flat, they might have convex or/and  

concave areas. To study these animalities in the surfaces, coaxial cylinders, are 

considered in the calculations, shown in Figure 4.14. For these calculations N=104 rays 

are used. 

 

Figure 4.14 Geometry of coaxial cylinders 

 

Table 4.8 View factors for r1=1, r2=2.5, h=6 

 F12 F21 

Runs 

0.829912 0.829912 0.829912 0.322021 0.323177 0.322091 

0.827846 0.827846 0.827846 0.323519 0.322761 0.323082 

0.829912 0.829912 0.829912 0.322639 0.322345 0.322516 

0.827846 0.827846 0.827846 0.321702 0.322905 0.323154 

Mean F 0.8278304 0.3226572 

Std Dev 0.0012667 0.0005473 

Std Error 0.0003656 0.0001581 

Fanalytical 0.8296384 0.3318552 

%Error 0.2179272 2.7719262 

 

 

 

r1 

r2 

h 



 

62 

4.5 CONCENTRIC SPHERES 

 The suggested model is also tested for concentric spheres, shown in Figure 4.15. 

Since inner sphere is within the outer sphere, it is expected that view factor between 

exterior of the inner sphere and interior of the outer sphere is equal to 1. Calculations 

were performed using N=104 rays, and the results are presented in Table 4.9. 

 
Figure 4.15 Geometry of concentric spheres 

 

Table 4.9 View factors for r1=1, r2=3  
Runs 

F12 
1.00361 1.00466 1.00016 1.00353 1.00163 1.0063 

1.00175 1.00025 1.00451 1.00438 1.00264 1.00344 

Mean F 1.003071667 

Std Dev 0.001854041 

Std Error 0.000535216 

Fanalytical 1.0 

%Error 0.307166667 
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4.6 CASE STUDY: MODELING OF PELLET HEATING EXPERIMENT 

 To test the performance of view factor model and radiative heat transfer model, 

ongoing pellet heating experiment at USC is modeled in MOOSE. The pellet is heated by 

joule heating via electrodes touching the pellet on opposite sides. Shown in Figure 4.16 is 

the half geometry of the experimental setup. 

 
 

Figure 4.16 Geometry representation of experimental setup 

 

 

There are three layers of materials around the pellet in purpose of insulation and 

stability. The dimensions and materials used in layers is given in Table 4.10. 

Table 4.10 Geometrical parameters for experimental setup  
Material Inner Radius(m) Outer Radius (m) Height (m) 

Pellet UO2 - 0.005461 0.01 

Tube 1 BN 0.005588 0.007747 0.01 

Susceptor Mo 0.007874 0.009652 0.01 

Tube 2 BN 0.009906 0.011760 0.01 
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Temperature dependent thermal properties of UO2 are used in calculations. A 

material model, using the equations given in Table 4.11, is implemented in MOOSE for 

UO2. For other materials constant thermal properties given in Table 4.12 are used. 

 

Table 4.11 Temperature Dependent UO2 Thermal properties [13] 

Thermal 
Conductivity 

(W/mK) 

100

7.5408 + 1.7692 ∗ 10−2 𝑇 + 3.6142 ∗ 10−6 𝑇2

+ 2.0239
exp (−16350/𝑇 ) 

𝑇2.5
 

Density 
(kg/m3) 

11049 − 0.334 ∗ 𝑇 + 3.9913 ∗ 10−5 𝑇2 − 2.7649 ∗ 10−8 𝑇3 

Specific Heat 
(J/kgK) 

193.218 − 2.6438 ∗ 106 𝑇−1 + 0.325711 𝑇 − 3.11971 ∗ 10−4 𝑇2

+ 1.1681 ∗ 10−7 𝑇3 − 9.7523 ∗ 10−12 𝑇4 

 

Table 4.12 Thermal properties of materials [14,15]  
Thermal Conductivity 

(W/mK) 
Density  
(kg/m3) 

Specific Heat 
(J/kgK) 

BN 80 1900 810 

Mo 138 10220 250 

 

In the MOOSE model, the geometry is surrounded by a hemisphere surface to 

define ambient temperature (320 K) as boundary condition, see Figure 4.17. 

 

Figure 4.17 Computation model of experimental setup 

 

 

Wall 
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Heat is generated in the pellet region by joule heating as a result of the voltage 

difference between electrodes. 

Electrical Fourier Equation, 

 𝐽𝑥 = 𝜎𝑥

𝛥𝑉

𝛥𝑥
 (43) 

where  𝐽𝑥 :  current flux [𝐴𝑚𝑝/𝑚2] 

           𝜎𝑥 :  electrical conductivity, 1/𝜌𝑥 , [1/𝛺𝑚] 

           𝜌𝑥 :  electrical resistivity, 1/𝜎𝑥 , [𝛺𝑚] 

           𝛥𝑥 :  spatial coordinate in the direction of current flow [𝑚] 

           𝛥𝑉 :  voltage difference [𝑣𝑜𝑙𝑡]  

Joule Heating, 

 𝑄 = 𝐽2𝜌 (44) 

where  𝑄 :  joule heating power [𝑊/𝑚3] 

 

Then heat conduction equation with joule heating source term becomes, 

 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
− 𝛥 ∙ 𝑘𝛥𝑇 − 𝑄 = 0 (45) 

 

Electrical conductivity of UO2 is found from literature and assumed as constant. [16] 

𝜎𝑥 = 1 𝛺𝑚−1 

 

The applied voltage on electrodes is equal to 10V and constant during experiment. 

The volumetric heat generation is calculated as 82 MW/m3 by equations (43) and (44) 

according to constant. 
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MOOSE currently has a gap heat transfer model, which is used to calculate heat 

transfer between fuel pellet surface and cladding inner surface. It is known that 

MOOSE’s GapHeatTransfer can calculate heat transfer in small gaps accurately, so It can 

be used to verify RadiativeHeatFluxBC results.  

For verification, the wall is removed from the geometry shown in Figure 4.17. 

Only concentric cylinders are used in simulations. A constant volumetric heat generation 

is defined in pellet. According to the results shown in Figure 4.18, the centerline 

temperature profiles are overlapping well. It can be concluded that RadiativeHeatFluxBC 

model is able to calculate accurately the radiative heat transfer between surfaces. 

 

 

 

Figure 4.18 Pellet centerline temperature for only concentric cylinders 

 

 

 

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

T 
(K

)

Time (sec)

Centerline Temperature

RadiativeHeatFluxBC

GapHeatTransfer



 

67 

Next, calculations are repeated for the actual geometry shown in Figure 4.17. 

Constant voltage of 10V is used for this calculations. The centerline temperature change, 

radial and axial temperature profiles are shown in following figures. 

 

 
 

Figure 4.19 Pellet centerline temperature for computational geometry 

 

 

 

Figure 4.20 Axial temperature profile in pellet 
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Figure 4.21 Radial temperature profile in pellet 

 

All surfaces shown in Figure 4.17 are considered as radiating. The lines labeled 

by “Mixed” in figures represent the results obtained from using GapHeatTransfer model 

in concentric cylinders and RadiativeHeatFluxBC model for top surfaces in the same 

simulation. Mixed results overleap well with the RadiativeHeatFluxBC results. 

 GapHeatTransfer model makes assumptions for radiation heat transfer 

calculations. These are diffusion approximation and infinite parallel planes. These 

assumptions are reasonable for small gap geometries which view factor is almost unity. 

For larger gap geometries, view factor is smaller than 1, and thus GapHeatTransfer model 

might not provide accurate results. RadiativeHeatFluxBC model is more flexible and can 

provide more accurate results because it counts view factors.  

In figures, RadiativeHeatFluxBC results are higher compared to GapHeatTransfer 

model results. The difference purely results from view factors. If the view factor is 

smaller than 1, less heat will be removed from surface. This causes an increase in 

temperature levels.
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CHAPTER 5 

 

CONCLUSION 
 

Two new model have been implemented to MOOSE for view factor and radiative 

heat transfer calculations. In view factor model, the MC method is used and the user 

object “ViewFactor” is created. In radiative heat transfer model, calculations are done by 

assuming surfaces are black, and a boundary condition model “RadiativeHeatFluxBC” is 

added to MOOSE. 

The MC method provides flexibility to calculate view factors for any kind of 

geometry. Although there are some drawbacks of MC method such as statistical error and 

computing time, by using high performance computers they could be minimized. 

There is still work that can be done to improve implemented models. The view 

factor model is currently based on MC method. Other methods can be added as future 

work to give user option. The radiative heat flux model is calculating heat transfer by 

assuming surfaces are black. As a future work, it can be modified in order to use for 

radiative heat exchange between gray or diffuse surfaces, considering absorption, 

transmission and reflection. 
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