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CART Algorithm 

This document describes the tree growing process of the CART algorithm. The algorithm is 
based on Classification and Regression Trees by Breiman et al (1984). A CART tree is a 
binary decision tree that is constructed by splitting a node into two child nodes repeatedly, 
beginning with the root node that contains the whole learning sample.  

Notations 
 

Y The dependent variable, or target variable. It can be ordinal categorical, 
nominal categorical or continuous. 

If Y is categorical with J classes, its class takes values in C = {1, …, J}.  

mX , m = 1, …, M The set of all predictor variables. A predictor can be ordinal categorical, 
nominal categorical or continuous.  

{ } N

nnn y 1, == x�  
The whole learning sample. 

)(t�  The learning samples that fall in node t.   

nw  The case weight associated with case n.   

nf  The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer.  

π( )j , j = 1, …, J Prior probability of Y = j, j = 1, …, J.  

),( tjp ,  j = 1, …, J The probability of a case in class j and node t.  

)(tp  The probability of a case in node t. 

)|( tjp , j = 1, …, J The probability of a case in class j given that it falls into node t.  

)|( jiC  The cost of miss-classifying a class j case as a class i case. Clearly 

0)|( =jjC . 

Tree Growing Process 
The basic idea of tree growing is to choose a split among all the possible splits at each node 
so that the resulting child nodes are the “purest”. In this algorithm, only univariate splits are 
considered. That is, each split depends on the value of only one predictor variable. All 
possible splits consist of possible splits of each predictor. If X is a nominal categorical 

variable of I categories, there are 12 1 −−I  possible splits for this predictor. If X is an ordinal 
categorical or continuous variable with K different values, there are K - 1 different splits on 
X. A tree is grown starting from the root node by repeatedly using the following steps on each 
node. 

1. Find each predictor’s best split. 
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For each continuous and ordinal predictor, sort its values from the smallest to the largest. 
For the sorted predictor, go through each value from top to examine each candidate split 
point (call it v, if x ≤  v, the case goes to the left child node, otherwise, goes to the right.) 
to determine the best. The best split point is the one that maximize the splitting criterion 
the most when the node is split according to it. The definition of splitting criterion is in 
later section. 

For each nominal predictor, examine each possible subset of categories (call it A, if 
Ax ∈ , the case goes to the left child node, otherwise, goes to the right.) to find the best 

split.  

2. Find the node’s best split. 

Among the best splits found in step 1, choose the one that maximizes the splitting 
criterion.  

3. Split the node using its best split found in step 2 if the stopping rules are not satisfied.  

Splitting criteria and impurity measures 

At node t, the best split s is chosen to maximize a splitting criterion ),( tsi∆ . When the 

impurity measure for a node can be defined, the splitting criterion corresponds to a decrease 
in impurity. In SPSS products, ),()(),( tsitptsI ∆=∆  is referred to as the improvement. 

Categorical dependent variable 

If Y is categorical, there are three splitting criteria available: Gini, Twoing, and ordered 
Twoing criteria.  

At node t, let probabilities ),( tjp , )(tp  and )|( tjp  be estimated by  
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with )( baI =  being indicator function taking value 1 when ba = , 0 otherwise. 

Gini criterion 

The Gini impurity measure at a node t is defined as 

∑=
ji

tjptipjiCti
,

)|()|()|()( . 

The Gini splitting criterion is the decrease of impurity defined as 

)()()(),( RRLL tiptiptitsi −−=∆ , 

where Lp  and Rp  are probabilities of sending a case to the left child node Lt  and to the 

right child node Lt  respectively. They are estimated as )()( tptpp LL =  and 

)()( tptpp RR = . 

Note: When user-specified costs are involved, the altered priors can be used to replace the 
priors (optional). When altered priors are used, the problem is considered as if no costs are 

involved. The altered prior is defined as ′π ( )j  = 
C j j
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Twoing Criterion 
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Ordered Twoing Criterion 

Ordered Twoing is used only when Y is ordinal categorical. Its algorithm is as follows: 
 

1. First separate the class C = {1, …, J} of Y as two super-classes C1 and C2  = C - C1 such 
that C1 is of the form C1 = {1, …, j1},  j1 = 1, …, J - 1. 

2. Using the 2-class measure i(t) = p(C1| t)p(C2| t), find the split s*(C1) that maximizes 
),( tsi∆ ,  
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3. Find the super-class C*

1 of C1 which maximizes )),(( 1
* tCsi∆ .  

Continuous dependent variable 

When Y is continuous, the splitting criterion )()()(),( RRLL tiptiptitsi −−=∆  is used 

with the Least Squares Deviation (LSD) impurity measures 
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Stopping Rules 
Stopping rules control if the tree growing process should be stopped or not. The following 
stopping rules are used: 

•  If a node becomes pure; that is, all cases in a node have identical values of the dependent 
variable, the node will not be split.  

•  If all cases in a node have identical values for each predictor, the node will not be split.  

•  If the current tree depth reaches the user-specified maximum tree depth limit value, the 
tree growing process will stop.  

•  If the size of a node is less than the user-specified minimum node size value, the node 
will not be split. 

•  If the split of a node results in a child node whose node size is less than the user-
specified minimum child node size value, the node will not be split.  
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•  If for the best split *s  of node t, the improvement ),()(),( ** tsitptsI ∆=∆ is smaller 

than the user-specified minimum improvement, the node will not be split. 

Surrogate Split 
Given a split ** sX ≤ , its surrogate split is a split using another predictor variable X, 

XsX ≤  (or XsX > ), such that this split is most similar to it and is with positive predictive 

measure of association. There may be multiple surrogate splits. The bigger the predictive 
measure of association is, the better the surrogate split is. 

Predictive measure of association 

Let 
XX ∩*�  (resp. �

X X
t* ( )∩ ) be the set of learning cases (resp. learning cases in node t) that 

has non-missing values of both X* and X.  Let )|( * tssp X≈  be the probability of sending a 

case in �
X X

t* ( )∩  to the same child by both *s  and Xs , and ~sX  be the split with maximized 

probability  ( ))|(max)|~( ** tssptssp X
s

X
X

≈=≈ . 

The predictive measure of association λ ( ~ | )*s s tX≈  between s* and ~sX  at node t is  
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where Lp  (resp. Rp ) is the relative probability that the best split s* at node t sends a case 

with non-missing value of X* to the left  (resp. right) child node, )()( tptpp LL =  and 

)()( tptpp RR =  respectively. And where 
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and ):( *
XssnI ≈  being the indicator function taking value 1 when both splits *s  and Xs  

send the case n to the same child, 0 otherwise. 

Missing Value Handling 
If the dependent variable of a case is missing, this case will be ignored in the analysis. If all 
predictor variables of a case are missing, this case will also be ignored. If the case weight is 
missing, zero, or negative, the case is ignored. If the frequency weight is missing, zero, or 
negative, the case is ignored. 

The surrogate split method is otherwise used to deal with missing data in predictor variables. 
Suppose that X* < s* is the best split at a node.  If value of X* is missing for a case, the best 
surrogate split (among all non-missing predictors associated with surrogate splits) will be 
used to decide which child node it should go. If there are no surrogate splits or all the 
predictors associated with surrogate splits for a case are missing, the majority rule is used. 
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